Projects per year
Abstract
Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modelling joint uncertainties with probability distributions. This paper focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica and others on vines as a way of constructing higher dimensional distributions which do not suffer from some of the restrictions of alternatives such as the multivariate Gaussian copula. The paper provides a fundamental approximation result, demonstrating that we can approximate any density as closely as we like using vines. It further operationalizes this result by showing how minimum information copulas can be used to provide parametric classes of copulas which have such good levels of approximation. We extend previous approaches using vines by considering non-constant conditional dependencies which are particularly relevant in financial risk modelling. We discuss how such models may be quantified, in terms of expert judgement or by fitting data, and illustrate the approach by modelling two financial datasets.
Original language | English |
---|---|
Pages (from-to) | 792-815 |
Number of pages | 24 |
Journal | Risk Analysis |
Volume | 36 |
Issue number | 4 |
Early online date | 2 Sept 2015 |
DOIs | |
Publication status | Published - 30 Apr 2016 |
Keywords
- risk analysis
- risk modelling
- Bayesian networks
- copula
- entropy
- vines
Fingerprint
Dive into the research topics of 'Approximate uncertainty modeling in risk analysis with vine copulas'. Together they form a unique fingerprint.Profiles
Projects
- 1 Finished
-
COUPLED MODELS: EXPERT JUDGEMENT, EMULATORS AND MODEL UNCERTAINTY
Bedford, T. (Principal Investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/08/07 → 31/07/10
Project: Research