Projects per year
Abstract
In the UK, gas boilers are the predominant energy source for heating in housing, due primarily to the ready
availability of natural gas. The take-up of heat pumps has lagged far behind Europe and North America. However, with the development of standards for low and zero-carbon housing, gas price rises and the depletion of the UK's
natural gas reserves, interest in heat pump technology is growing. Heat pumps, particularly air source heat pumps (ASHP), have the potential to be a direct, low-carbon replacement for gas boiler systems in housing.
In this paper, monitored data and simulations were used to assess the performance of ASHP when retro-fitted into a
dwelling. This required the development and calibration of a model of an ASHP device and its integration into a
whole-building, dynamic simulation environment. The predictions of the whole-building model were compared to
field trial data, indicating that it provided a suitable test bed for energy performance assessment. Annual simulations indicated that the ASHP produced 12% less carbon that an equivalent condensing gas boiler system, but was around 10% more expensive to run. However, the proposed UK renewable heat incentive transforms this situation, with
income from ASHP heat generation exceeding the fuel costs.
Original language | English |
---|---|
Pages (from-to) | 239-245 |
Number of pages | 7 |
Journal | Energy and Buildings |
Volume | 43 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2011 |
Keywords
- heat pump technology
- air source heat pumps
- low-carbon in housing
- energy performance assessment
- simulation
- ASHP
Fingerprint
Dive into the research topics of 'Analysis of retrofit air source heat pump performance: results from detailed simulations and comparison to field trial data'. Together they form a unique fingerprint.Projects
- 1 Finished
-
HiDEF. Supergen 3 HDPS Renewal Core and Pluses
Infield, D. (Principal Investigator), Ault, G. (Co-investigator), Bell, K. (Co-investigator), Burt, G. (Co-investigator), Finney, S. (Co-investigator), Fletcher, J. (Co-investigator), Johnstone, C. (Co-investigator), Kelly, N. (Co-investigator), Kockar, I. (Co-investigator), McGregor, P. (Co-investigator) & Williams, B. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/07/09 → 30/09/13
Project: Research