TY - JOUR
T1 - Analysis of mammography screening schedules under varying resource constraints for planning breast cancer control programs in low- and middle-income countries
T2 - a mathematical study
AU - Bansal, Shifali
AU - Deshpande, Vijeta
AU - Zhao, Xinmeng
AU - Lauer, Jeremy A.
AU - Meheus, Filip
AU - Ilbawi, André
AU - Gopalappa, Chaitra
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Background. Low-and-middle-income countries (LMICs) have higher mortality-to-incidence ratio for breast cancer compared to high-income countries (HICs) because of late-stage diagnosis. Mammography screening is recommended for early diagnosis, however, the infrastructure capacity in LMICs are far below that needed for adopting current screening guidelines. Current guidelines are extrapolations from HICs, as limited data had restricted model development specific to LMICs, and thus, economic analysis of screening schedules specific to infrastructure capacities are unavailable. Methods. We applied a new Markov process method for developing cancer progression models and a Markov decision process model to identify optimal screening schedules under a varying number of lifetime screenings per person, a proxy for infrastructure capacity. We modeled Peru, a middle-income country, as a case study and the United States, an HIC, for validation. Results. Implementing 2, 5, 10, and 15 lifetime screens would require about 55, 135, 280, and 405 mammography machines, respectively, and would save 31, 62, 95, and 112 life-years per 1000 women, respectively. Current guidelines recommend 15 lifetime screens, but Peru has only 55 mammography machines nationally. With this capacity, the best strategy is 2 lifetime screenings at age 50 and 56 years. As infrastructure is scaled up to accommodate 5 and 10 lifetime screens, screening between the ages of 44-61 and 41-64 years, respectively, would have the best impact. Our results for the United States are consistent with other models and current guidelines. Limitations. The scope of our model is limited to analysis of national-level guidelines. We did not model heterogeneity across the country. Conclusions. Country-specific optimal screening schedules under varying infrastructure capacities can systematically guide development of cancer control programs and planning of health investments.
AB - Background. Low-and-middle-income countries (LMICs) have higher mortality-to-incidence ratio for breast cancer compared to high-income countries (HICs) because of late-stage diagnosis. Mammography screening is recommended for early diagnosis, however, the infrastructure capacity in LMICs are far below that needed for adopting current screening guidelines. Current guidelines are extrapolations from HICs, as limited data had restricted model development specific to LMICs, and thus, economic analysis of screening schedules specific to infrastructure capacities are unavailable. Methods. We applied a new Markov process method for developing cancer progression models and a Markov decision process model to identify optimal screening schedules under a varying number of lifetime screenings per person, a proxy for infrastructure capacity. We modeled Peru, a middle-income country, as a case study and the United States, an HIC, for validation. Results. Implementing 2, 5, 10, and 15 lifetime screens would require about 55, 135, 280, and 405 mammography machines, respectively, and would save 31, 62, 95, and 112 life-years per 1000 women, respectively. Current guidelines recommend 15 lifetime screens, but Peru has only 55 mammography machines nationally. With this capacity, the best strategy is 2 lifetime screenings at age 50 and 56 years. As infrastructure is scaled up to accommodate 5 and 10 lifetime screens, screening between the ages of 44-61 and 41-64 years, respectively, would have the best impact. Our results for the United States are consistent with other models and current guidelines. Limitations. The scope of our model is limited to analysis of national-level guidelines. We did not model heterogeneity across the country. Conclusions. Country-specific optimal screening schedules under varying infrastructure capacities can systematically guide development of cancer control programs and planning of health investments.
KW - cancer screening guidelines
KW - dynamic programming
KW - low- and -middle income countries
KW - mammography screening
KW - Markov decision processes
U2 - 10.1177/0272989X20910724
DO - 10.1177/0272989X20910724
M3 - Article
AN - SCOPUS:85081971533
VL - 40
SP - 364
EP - 378
JO - Medical Decision Making
JF - Medical Decision Making
SN - 0272-989X
IS - 3
ER -