Analysis of a solar sail mercury sample return mission

Gareth W. Hughes, M. Macdonald, Colin McInnes, A. Atzei, P. Falkner

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Citations (Scopus)

Abstract

Solar sailing can be used to reduce lander mass allocation by delivering the lander to a low, thermally safe orbit close to the terminator. In addition, the ascending node of the solar sail parking orbit plane can be artificially forced to avoid out-of-plane manoeuvres during ascent from the planetary surface. Propellant mass is not an issue for solar sails so a sample can be returned relatively easily, without resorting to lengthy, multiple gravity assists. A 275 m solar sail with an assembly loading of 5.9 g m-2 is used to deliver a lander, cruise stage and science payload to a forced Sun-synchronous orbit at Mercury in 2.85 years. The lander acquires samples, and conducts limited surface exploration. An ascent vehicle delivers a small cold gas rendezvous vehicle containing the samples for transfer to the solar sail. The solar sail then spirals back to Earth in 1 year. The total mission launch mass is 2353 kg, on an H2A202-4S class launch vehicle (C3=0), with a ROM mission cost of 850 M¼1RPLQDOODXQFKLVLQ$SULO 2014 with sample return to Earth 4.4 years later. Solar sailing reduces launch mass by 60% and trip time by 40%, relative to conventional mission concepts. Propellant mass is not an issue for solar sails so a sample can be returned relatively easily, without resorting to lengthy, multiple gravity assists. A 275 m solar sail with an assembly loading of 5.9 g m-2 is used to deliver a lander, cruise stage and science payload to a forced Sun-synchronous orbit at Mercury in 2.85 years. The lander acquires samples, and conducts limited surface exploration. An ascent vehicle delivers a small cold gas rendezvous vehicle containing the samples for transfer to the solar sail. The solar sail then spirals back to Earth in 1 year. Solar sailing reduces launch mass by 60% and trip time by 40%, relative to conventional mission concepts.
Original languageEnglish
Title of host publicationProceedings of the 55th International Astronautical Congress
Pages197
EditionIAC-04-S.2.b.08
Publication statusPublished - 26 Apr 2004

Keywords

  • solar sailing
  • solar sails
  • space mission
  • guidance systems
  • space technology

Cite this