An optimized Schwarz algorithm for the compressible Euler equations

Victorita Dolean, Frédéric Nataf

Research output: Chapter in Book/Report/Conference proceedingChapter

3 Citations (Scopus)

Abstract

In this work, we design new interface transmission conditions for a domain decomposition Schwarz algorithm for the Euler equations in two dimensions. These new interface conditions are designed to improve the convergence properties of the Schwarz algorithm. These conditions depend on a few parameters and they generalize the classical ones. Numerical results illustrate the effectiveness of the new interface conditions.

Original languageEnglish
Title of host publicationDomain Decomposition Methods in Science and Engineering XVI
EditorsOlof B. Widlund, David E. Keyes
Place of PublicationBerlin
PublisherSpringer
Pages173-180
Number of pages8
ISBN (Print)9783540344681, 9783540344698
DOIs
Publication statusPublished - 11 Dec 2006

Publication series

NameLecture Notes in Computational Science and Engineering
Volume55
ISSN (Print)1439-7358

Keywords

  • Mach number
  • convergence rate
  • Euler equation
  • interface condition
  • transmission condition

Fingerprint Dive into the research topics of 'An optimized Schwarz algorithm for the compressible Euler equations'. Together they form a unique fingerprint.

  • Cite this

    Dolean, V., & Nataf, F. (2006). An optimized Schwarz algorithm for the compressible Euler equations. In O. B. Widlund, & D. E. Keyes (Eds.), Domain Decomposition Methods in Science and Engineering XVI (pp. 173-180). (Lecture Notes in Computational Science and Engineering; Vol. 55). Springer. https://doi.org/10.1007/978-3-540-34469-8_17