TY - JOUR
T1 - An energy-efficient cyclic amine system developed for carbon capture from both flue gas and air
AU - Lu, Guanchu
AU - Yue, Zongyang
AU - Deng, Yanan
AU - Xue, Yuxiang
AU - Huang, Yi
AU - Zhang, Xiaolei
AU - Chen, Xianfeng
AU - Fan, Xianfeng
PY - 2024/9/15
Y1 - 2024/9/15
N2 - High energy consumption is a major barrier to the large-scale deployment of carbon capture processes from flue gases or air (direct air capture, DAC). The non-aqueous amines reported in literature possess a high energy efficiency for CO2 capture from flue gases, they struggle with gas streams containing ultra-dilute CO2, like air, due to poor absorption kinetics. This study developed novel 2-PE (2-piperidineethanol)/APZ (Aminoethylpiperazine) based CO2 absorbents to address these problems. The experiments and MD simulation results showed that the 2-PE/APZ-based absorbents possessed a superior absorption performance both in flue gas and air. Among the developed absorbents, when 2-PE/APZ mixed with DMF (Dimethylformamide), the CO2 loading reached to 1.004 mol/mole, as the theoretical maximum. In DAC tests, 87.31 % CO2 from the air was captured in 24 h experiments. The regeneration heat duty of 2-PE/APZ/DMF decreased to 1.694 KJ/g CO2, a 55.89 % reduction compared to the benchmark 30 wt% MEA. The CO2 absorption/desorption mechanism was analysed by NMR, In-situ FT-IR, and DFT calculation. It indicated that this significant improvement in CO2 absorption performance and the reduction in energy consumption are due to the synergistic effect of 2-PE and APZ. During CO2 absorption, CO2 reacts with APZ forming APZ zwitterion rapidly, then deprotonation to the 2-PE. The formation of protonated 2-PEH+ ion pairs with APZCOO- reduces hydrogen bonds and van der Waals forces among the amine-CO2 complex, facilitating easy regeneration at mild conditions while maintaining high reactivity. The combination of theoretical and experimental results indicates that 2-PE/APZ-based absorbents can serve as a promising alternative for carbon capture from flue gas to air with low energy usage.
AB - High energy consumption is a major barrier to the large-scale deployment of carbon capture processes from flue gases or air (direct air capture, DAC). The non-aqueous amines reported in literature possess a high energy efficiency for CO2 capture from flue gases, they struggle with gas streams containing ultra-dilute CO2, like air, due to poor absorption kinetics. This study developed novel 2-PE (2-piperidineethanol)/APZ (Aminoethylpiperazine) based CO2 absorbents to address these problems. The experiments and MD simulation results showed that the 2-PE/APZ-based absorbents possessed a superior absorption performance both in flue gas and air. Among the developed absorbents, when 2-PE/APZ mixed with DMF (Dimethylformamide), the CO2 loading reached to 1.004 mol/mole, as the theoretical maximum. In DAC tests, 87.31 % CO2 from the air was captured in 24 h experiments. The regeneration heat duty of 2-PE/APZ/DMF decreased to 1.694 KJ/g CO2, a 55.89 % reduction compared to the benchmark 30 wt% MEA. The CO2 absorption/desorption mechanism was analysed by NMR, In-situ FT-IR, and DFT calculation. It indicated that this significant improvement in CO2 absorption performance and the reduction in energy consumption are due to the synergistic effect of 2-PE and APZ. During CO2 absorption, CO2 reacts with APZ forming APZ zwitterion rapidly, then deprotonation to the 2-PE. The formation of protonated 2-PEH+ ion pairs with APZCOO- reduces hydrogen bonds and van der Waals forces among the amine-CO2 complex, facilitating easy regeneration at mild conditions while maintaining high reactivity. The combination of theoretical and experimental results indicates that 2-PE/APZ-based absorbents can serve as a promising alternative for carbon capture from flue gas to air with low energy usage.
KW - DFT calculation
KW - Direct air capture
KW - Low energy regeneration
KW - Non-aqueous CO absorbents
KW - Post-combustion capture
UR - http://www.scopus.com/inward/record.url?scp=85199031504&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.154085
DO - 10.1016/j.cej.2024.154085
M3 - Article
AN - SCOPUS:85199031504
SN - 1385-8947
VL - 496
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 154085
ER -