An accurate prediction of hydration free energies by combination of molecular integral equations theory with structural descriptors

Ekaterina L. Ratkova, Gennady N. Chuev, Volodymyr P. Sergiievskyi, Maxim V. Fedorov

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

In this work, we report a novel method for the estimation of the hydration free energy of organic molecules, the structural descriptors correction (SDC) model. The method is based on a combination of the reference interaction site model (RISM) with several empirical corrections. The model requires only a small number of chemical descriptors associated with the main features of the chemical structure of solutes: excluded volume, branch, double bond, benzene ring, hydroxyl group, halogen atom, aldehyde group, ketone group, ether group, and phenol fragment. The optimum model was selected after testing of different RISM free energy expressions on a training set of 65 molecules. We show that the correction parameters of the SDC model are transferable between different chemical classes, which allows one to cover a wide range of organic solutes. The new model substantially increases the accuracy of calculated HFEs by RISM giving the standard deviation of the error for a test set of 120 organic molecules around 1.2 kcal/mol.

Original languageEnglish
Pages (from-to)12068-12079
Number of pages12
JournalJournal of Physical Chemistry B
Volume114
Issue number37
DOIs
Publication statusPublished - 23 Sep 2010

    Fingerprint

Keywords

  • interaction site model
  • solvation free-energy
  • repulsive bridge correction
  • thermodynamics
  • crystal lattice-energy
  • drug solubility
  • atom force-field
  • aqueous solutions

Cite this