Research output per year
Research output per year
Barry A. Blight, Christopher A. Hunter, David A. Leigh, Hamish McNab, Patrick I. T. Thomson
Research output: Contribution to journal › Article › peer-review
Secondary electrostatic interactions between adjacent hydrogen bonds can have a significant effect on the stability of a supramolecular complex. In theory, the binding strength should be maximized if all the hydrogen-bond donors (D) are on one component and all the hydrogen-bond acceptors (A) are on the other. Here, we describe a readily accessible AAAA–DDDD quadruple hydrogen-bonding array that exhibits exceptionally strong binding for a small-molecule hydrogen-bonded complex in a range of different solvents (K(a) > 3 × 10(12) M(-1) in CH2Cl2, 1.5 × 10(6) M(-1) in CH3CN and 3.4 × 10(5) M(-1) in 10% v/v DMSO/CHCl3). The association constant in CH2Cl2 corresponds to a binding free energy (ΔG) in excess of –71 kJ mol(-1) (more than 20% of the thermodynamic stability of a carbon–carbon covalent bond), which is remarkable for a supramolecular complex held together by just four intercomponent hydrogen bonds.
Original language | English |
---|---|
Pages (from-to) | 244-48 |
Number of pages | 5 |
Journal | Nature Chemistry |
Issue number | 3 |
DOIs | |
Publication status | Published - 21 Feb 2011 |
Research output: Thesis › Doctoral Thesis