Advancing carbon fiber composite inspection: deep learning-enabled defect localization and sizing via 3-Dimensional U-Net segmentation of ultrasonic data

Research output: Contribution to journalArticlepeer-review

27 Downloads (Pure)

Abstract

In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.

Original languageEnglish
Pages (from-to)1106-1119
Number of pages14
JournalIEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Volume71
Issue number9
Early online date3 Jun 2024
DOIs
Publication statusPublished - Sept 2024

Keywords

  • Ultrasonic Testing
  • Segmentation
  • three-dimensional
  • U-Net
  • Composite
  • deep learning
  • defect characterization

Fingerprint

Dive into the research topics of 'Advancing carbon fiber composite inspection: deep learning-enabled defect localization and sizing via 3-Dimensional U-Net segmentation of ultrasonic data'. Together they form a unique fingerprint.

Cite this