Advanced array processing techniques and systems

M. Li

Research output: Contribution to journalArticle

Abstract

Research and development on smart antennas, which are recognized as a promising technique to improve the performance of mobile communications, have been extensive in the recent years. Smart antennas combine multiple antenna elements with a signal processing capability in both space and time to optimize its radiation and reception pattern automatically in response to the signal environment. This paper concentrates on the signal processing aspects of smart antenna systems. Smart antennas are often classified as either switched-beam or adaptive-array systems, for which a variety of algorithms have been developed to enhance the signal of interest and reject the interference. The antenna systems need to differentiate the desired signal from the interference, and normally requires either a priori knowledge or the signal direction to achieve its goal. There exists a variety of methods for direction of arrival (DOA) estimation with conflicting demands of accuracy and computation. Similarly, there are many algorithms to compute array weights to direct the maximum radiation of the array pattern toward the signal and place nulls toward the interference, each with its convergence property and computational complexity. This paper discusses some of the typical algorithms for DOA estimation and beamforming. The concept and details of each algorithm are provided. Smart antennas can significantly help in improving the performance of communication systems by increasing channel capacity and spectrum efficiency, extending range coverage, multiplexing channels with spatial division multiple access (SDMA), and compensating electronically for aperture distortion. They also reduce delay spread, multipath fading, co-channel interference, system complexity, bit error rates, and outage probability. In addition, smart antennas can locate mobile units or assist the location determination through DOA and range estimation. This capability can support and benefit many location-based services including emergency assistance, tracking services, safety services, billing services, and information services such as navigation, weather, traffic, and directory assistance.
LanguageEnglish
Pages381-414
Number of pages34
JournalInternational Journal of Computer Research
Volume17
Issue number4
Publication statusPublished - Dec 2009

Fingerprint

Smart antennas
Array processing
Direction of arrival
Signal processing
Antennas
Radiation
Location based services
Multipath fading
Channel capacity
Information services
Beamforming
Multiplexing
Outages
Bit error rate
Computational complexity
Communication systems
Navigation
Communication

Keywords

  • array signal processing
  • beamforming
  • direction-of-arrival estimation
  • smart antennas

Cite this

@article{13848f97f84f462ab3f14457d8ad2607,
title = "Advanced array processing techniques and systems",
abstract = "Research and development on smart antennas, which are recognized as a promising technique to improve the performance of mobile communications, have been extensive in the recent years. Smart antennas combine multiple antenna elements with a signal processing capability in both space and time to optimize its radiation and reception pattern automatically in response to the signal environment. This paper concentrates on the signal processing aspects of smart antenna systems. Smart antennas are often classified as either switched-beam or adaptive-array systems, for which a variety of algorithms have been developed to enhance the signal of interest and reject the interference. The antenna systems need to differentiate the desired signal from the interference, and normally requires either a priori knowledge or the signal direction to achieve its goal. There exists a variety of methods for direction of arrival (DOA) estimation with conflicting demands of accuracy and computation. Similarly, there are many algorithms to compute array weights to direct the maximum radiation of the array pattern toward the signal and place nulls toward the interference, each with its convergence property and computational complexity. This paper discusses some of the typical algorithms for DOA estimation and beamforming. The concept and details of each algorithm are provided. Smart antennas can significantly help in improving the performance of communication systems by increasing channel capacity and spectrum efficiency, extending range coverage, multiplexing channels with spatial division multiple access (SDMA), and compensating electronically for aperture distortion. They also reduce delay spread, multipath fading, co-channel interference, system complexity, bit error rates, and outage probability. In addition, smart antennas can locate mobile units or assist the location determination through DOA and range estimation. This capability can support and benefit many location-based services including emergency assistance, tracking services, safety services, billing services, and information services such as navigation, weather, traffic, and directory assistance.",
keywords = "array signal processing, beamforming, direction-of-arrival estimation, smart antennas",
author = "M. Li",
year = "2009",
month = "12",
language = "English",
volume = "17",
pages = "381--414",
journal = "International Journal of Computer Research",
issn = "1535-6698",
number = "4",

}

Advanced array processing techniques and systems. / Li, M.

In: International Journal of Computer Research, Vol. 17, No. 4, 12.2009, p. 381-414.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Advanced array processing techniques and systems

AU - Li, M.

PY - 2009/12

Y1 - 2009/12

N2 - Research and development on smart antennas, which are recognized as a promising technique to improve the performance of mobile communications, have been extensive in the recent years. Smart antennas combine multiple antenna elements with a signal processing capability in both space and time to optimize its radiation and reception pattern automatically in response to the signal environment. This paper concentrates on the signal processing aspects of smart antenna systems. Smart antennas are often classified as either switched-beam or adaptive-array systems, for which a variety of algorithms have been developed to enhance the signal of interest and reject the interference. The antenna systems need to differentiate the desired signal from the interference, and normally requires either a priori knowledge or the signal direction to achieve its goal. There exists a variety of methods for direction of arrival (DOA) estimation with conflicting demands of accuracy and computation. Similarly, there are many algorithms to compute array weights to direct the maximum radiation of the array pattern toward the signal and place nulls toward the interference, each with its convergence property and computational complexity. This paper discusses some of the typical algorithms for DOA estimation and beamforming. The concept and details of each algorithm are provided. Smart antennas can significantly help in improving the performance of communication systems by increasing channel capacity and spectrum efficiency, extending range coverage, multiplexing channels with spatial division multiple access (SDMA), and compensating electronically for aperture distortion. They also reduce delay spread, multipath fading, co-channel interference, system complexity, bit error rates, and outage probability. In addition, smart antennas can locate mobile units or assist the location determination through DOA and range estimation. This capability can support and benefit many location-based services including emergency assistance, tracking services, safety services, billing services, and information services such as navigation, weather, traffic, and directory assistance.

AB - Research and development on smart antennas, which are recognized as a promising technique to improve the performance of mobile communications, have been extensive in the recent years. Smart antennas combine multiple antenna elements with a signal processing capability in both space and time to optimize its radiation and reception pattern automatically in response to the signal environment. This paper concentrates on the signal processing aspects of smart antenna systems. Smart antennas are often classified as either switched-beam or adaptive-array systems, for which a variety of algorithms have been developed to enhance the signal of interest and reject the interference. The antenna systems need to differentiate the desired signal from the interference, and normally requires either a priori knowledge or the signal direction to achieve its goal. There exists a variety of methods for direction of arrival (DOA) estimation with conflicting demands of accuracy and computation. Similarly, there are many algorithms to compute array weights to direct the maximum radiation of the array pattern toward the signal and place nulls toward the interference, each with its convergence property and computational complexity. This paper discusses some of the typical algorithms for DOA estimation and beamforming. The concept and details of each algorithm are provided. Smart antennas can significantly help in improving the performance of communication systems by increasing channel capacity and spectrum efficiency, extending range coverage, multiplexing channels with spatial division multiple access (SDMA), and compensating electronically for aperture distortion. They also reduce delay spread, multipath fading, co-channel interference, system complexity, bit error rates, and outage probability. In addition, smart antennas can locate mobile units or assist the location determination through DOA and range estimation. This capability can support and benefit many location-based services including emergency assistance, tracking services, safety services, billing services, and information services such as navigation, weather, traffic, and directory assistance.

KW - array signal processing

KW - beamforming

KW - direction-of-arrival estimation

KW - smart antennas

UR - https://www.novapublishers.com/catalog/product_info.php?cPath=125&products_id=1709

M3 - Article

VL - 17

SP - 381

EP - 414

JO - International Journal of Computer Research

T2 - International Journal of Computer Research

JF - International Journal of Computer Research

SN - 1535-6698

IS - 4

ER -