Accurate model for predicting adsorption of olefins and paraffins on MOFs with open metal sites

Miguel Jorge, Michael Fischer, Jose R. B. Gomes, Christophe Siquet, João C Santos, Alirio E. Rodrigues

Research output: Contribution to journalArticle

41 Citations (Scopus)
165 Downloads (Pure)

Abstract

Metal–organic frameworks (MOFs) have shown tremendous potential for challenging gas separation applications, an example of which is the separation of olefins from paraffins. Some of the most promising MOFs show enhanced selectivity for the olefins due to the presence of coordinatively unsaturated metal sites, but accurate predictive models for such systems are still lacking. In this paper, we present results of a combined experimental and theoretical study on adsorption of propane, propylene, ethane, and ethylene in CuBTC, a MOF with open metal sites. We first propose a simple procedure to correct for impurities present in real materials, which in most cases makes experimental data from different sources consistent with each other and with molecular simulation results. By applying a novel molecular modeling approach based on a combination of quantum mechanical density functional theory and classical grand canonical Monte Carlo simulations, we are able to achieve excellent predictions of olefin adsorption, in much better agreement with experiment than traditional, mostly empirical, molecular models. Such an improvement in predictive ability relies on a correct representation of the attractive energy of the unsaturated metal for the carbon–carbon double bond present in alkenes. This approach has the potential to be generally applicable to other gas separations that involve specific coordination-type bonds between adsorbates and adsorbents.
Original languageEnglish
JournalIndustrial and Engineering Chemistry Research
Early online date11 Mar 2014
DOIs
Publication statusPublished - 2014

Keywords

  • olefin adsorption
  • Monte Carlo simulations
  • gas separation
  • metal–organic frameworks
  • olefins
  • paraffins

Fingerprint Dive into the research topics of 'Accurate model for predicting adsorption of olefins and paraffins on MOFs with open metal sites'. Together they form a unique fingerprint.

Cite this