Abstract
Three general modes are distinguished in the deformation of a thin shell; these are stretching, drilling, and bending. Of these, the drilling mode is the one more likely to emerge in a soft matter shell (as compared to a hard, structural one), as it is ignited by a swerve of material fibers about the local normal. We propose a hyperelastic theory for soft shells, based on a separation criterion that envisages the strain-energy density as the sum of three independent pure measures of stretching, drilling, and bending. Each individual measure is prescribed to vanish on all other companion modes. The result is a direct, second-grade theory featuring a bending energy quartic in an invariant strain descriptor that stems from the polar rotation hidden in the deformation gradient (although quadratic energies are also appropriate in special cases). The proposed energy functional has a multi-well character, which fosters cases of soft elasticity (with a continuum of ground states) related to minimal surfaces.
Original language | English |
---|---|
Article number | 106132 |
Number of pages | 18 |
Journal | Journal of the Mechanics and Physics of Solids |
Volume | 200 |
Early online date | 9 Apr 2025 |
DOIs | |
Publication status | E-pub ahead of print - 9 Apr 2025 |
Keywords
- shell theory
- soft matter
- soft elasticity
- plate theory
- continuum mechanics
- pure measures