A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps

Frédéric Nataf, Hua Xiang, Victorita Dolean

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. In this Note we construct the coarse grid space using the low frequency modes of the subdomain DtN (Dirichlet-Neumann) maps, and apply the obtained two-level preconditioner to the linear system arising from an overlapping domain decomposition. Our method is suitable for the parallel implementation and its efficiency is demonstrated by numerical examples on problems with high heterogeneities.

Translated title of the contributionA two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps
LanguageFrench
Pages1163-1167
Number of pages5
JournalComptes Rendus Mathematique
Volume348
Issue number21-22
Early online date30 Oct 2010
DOIs
Publication statusPublished - 30 Nov 2010

Fingerprint

Dirichlet-to-Neumann Map
Domain Decomposition
Preconditioner
Grid
Domain Decomposition Method
Parallel Implementation
Dirichlet
Overlapping
Low Frequency
Linear Systems
Numerical Examples

Keywords

  • coarse grid correction
  • domain decomposition methods
  • low frequency modes

Cite this

@article{aa6b7fc183044eb2b3fe3bf46315a0b7,
title = "Une m{\'e}thode de d{\'e}composition de domaine {\`a} deux niveaux bas{\'e}e sur l'op{\'e}rateur de Steklov-Poincar{\'e}",
abstract = "Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. In this Note we construct the coarse grid space using the low frequency modes of the subdomain DtN (Dirichlet-Neumann) maps, and apply the obtained two-level preconditioner to the linear system arising from an overlapping domain decomposition. Our method is suitable for the parallel implementation and its efficiency is demonstrated by numerical examples on problems with high heterogeneities.",
keywords = "coarse grid correction, domain decomposition methods, low frequency modes",
author = "Fr{\'e}d{\'e}ric Nataf and Hua Xiang and Victorita Dolean",
year = "2010",
month = "11",
day = "30",
doi = "10.1016/j.crma.2010.10.007",
language = "French",
volume = "348",
pages = "1163--1167",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
number = "21-22",

}

Une méthode de décomposition de domaine à deux niveaux basée sur l'opérateur de Steklov-Poincaré. / Nataf, Frédéric; Xiang, Hua; Dolean, Victorita.

In: Comptes Rendus Mathematique, Vol. 348, No. 21-22, 30.11.2010, p. 1163-1167.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Une méthode de décomposition de domaine à deux niveaux basée sur l'opérateur de Steklov-Poincaré

AU - Nataf, Frédéric

AU - Xiang, Hua

AU - Dolean, Victorita

PY - 2010/11/30

Y1 - 2010/11/30

N2 - Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. In this Note we construct the coarse grid space using the low frequency modes of the subdomain DtN (Dirichlet-Neumann) maps, and apply the obtained two-level preconditioner to the linear system arising from an overlapping domain decomposition. Our method is suitable for the parallel implementation and its efficiency is demonstrated by numerical examples on problems with high heterogeneities.

AB - Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. In this Note we construct the coarse grid space using the low frequency modes of the subdomain DtN (Dirichlet-Neumann) maps, and apply the obtained two-level preconditioner to the linear system arising from an overlapping domain decomposition. Our method is suitable for the parallel implementation and its efficiency is demonstrated by numerical examples on problems with high heterogeneities.

KW - coarse grid correction

KW - domain decomposition methods

KW - low frequency modes

UR - http://www.scopus.com/inward/record.url?scp=78249247416&partnerID=8YFLogxK

U2 - 10.1016/j.crma.2010.10.007

DO - 10.1016/j.crma.2010.10.007

M3 - Article

VL - 348

SP - 1163

EP - 1167

JO - Comptes Rendus Mathematique

T2 - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 21-22

ER -