A transition arm modular multilevel universal pulse-waveform generator for electroporation applications

Mohamed A. Elgenedy, Ahmed Badawy, Shehab Ahmed, Barry W. Williams

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

High voltage (HV) pulses are used in electroporation to subject pulsed electric field (PEF) onto a sample under treatment. Pulse-waveform shape, voltage magnitude, pulse duration, and pulse repetition rate are the basic controllable variables required for particular PEF application. In practice, a custom-made pulse generator is dedicated for each PEF application with limited flexibility in changing these variables. In this paper, a universal pulse-waveform generator (UPG) is proposed, where the controller software-algorithm can manipulate a basic generated multilevel pulse-waveform to emulate many different PEF pulse-waveforms. The commonly used PEF HV pulse-waveforms can be generated as bipolar or monopolar with controllable pulse durations, repetition times, and voltage magnitudes. The UPG has the ability to generate multilevel pulses that have controllable dv/dt which allow reduction of the electromagnetic interference (EMI) generated by the converter. The UPG topology is based on half-bridge modular multilevel converter (HB-MMC) cells forming two transition arms in conjunction with two bi-state arms, together creating an H-bridge. The HB-MMC cell-capacitors provide a controllable energy source which charge from the dc input supply and discharge across the load, while the two bi-state arms allow charging the HB-MMC cell-capacitors. Hence, the UPG topology offers modularity, redundancy, and scalability. The HB-MMC individual cell-capacitance is low and the cell-voltages are balanced by employing the sorting and rotating algorithm used in conventional HB-MMC topologies for HVDC transmission applications. The viability of the proposed UPG converter is validated by MATLAB/Simulink simulation and scaled-down experimentation.
LanguageEnglish
Pages1-13
Number of pages13
JournalIEEE Transactions on Power Electronics
Early online date16 Jan 2017
DOIs
Publication statusE-pub ahead of print - 16 Jan 2017

Fingerprint

Electric fields
Electric potential
Topology
Capacitors
Pulse repetition rate
Pulse generators
Signal interference
Sorting
MATLAB
Redundancy
Scalability
Laser pulses
Capacitance
Controllers

Keywords

  • MMC
  • power electronic converter
  • pulse power systems
  • electroporation
  • high voltage
  • modular multilevel converters
  • transition arm
  • pulsed electric fields
  • pulse-waveforms generator
  • series connected IGBTs

Cite this

@article{81d6fd7ac7364366904bb821494afe9a,
title = "A transition arm modular multilevel universal pulse-waveform generator for electroporation applications",
abstract = "High voltage (HV) pulses are used in electroporation to subject pulsed electric field (PEF) onto a sample under treatment. Pulse-waveform shape, voltage magnitude, pulse duration, and pulse repetition rate are the basic controllable variables required for particular PEF application. In practice, a custom-made pulse generator is dedicated for each PEF application with limited flexibility in changing these variables. In this paper, a universal pulse-waveform generator (UPG) is proposed, where the controller software-algorithm can manipulate a basic generated multilevel pulse-waveform to emulate many different PEF pulse-waveforms. The commonly used PEF HV pulse-waveforms can be generated as bipolar or monopolar with controllable pulse durations, repetition times, and voltage magnitudes. The UPG has the ability to generate multilevel pulses that have controllable dv/dt which allow reduction of the electromagnetic interference (EMI) generated by the converter. The UPG topology is based on half-bridge modular multilevel converter (HB-MMC) cells forming two transition arms in conjunction with two bi-state arms, together creating an H-bridge. The HB-MMC cell-capacitors provide a controllable energy source which charge from the dc input supply and discharge across the load, while the two bi-state arms allow charging the HB-MMC cell-capacitors. Hence, the UPG topology offers modularity, redundancy, and scalability. The HB-MMC individual cell-capacitance is low and the cell-voltages are balanced by employing the sorting and rotating algorithm used in conventional HB-MMC topologies for HVDC transmission applications. The viability of the proposed UPG converter is validated by MATLAB/Simulink simulation and scaled-down experimentation.",
keywords = "MMC, power electronic converter, pulse power systems, electroporation, high voltage, modular multilevel converters, transition arm, pulsed electric fields, pulse-waveforms generator, series connected IGBTs",
author = "Elgenedy, {Mohamed A.} and Ahmed Badawy and Shehab Ahmed and Williams, {Barry W.}",
note = "{\circledC} 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.",
year = "2017",
month = "1",
day = "16",
doi = "10.1109/TPEL.2017.2653243",
language = "English",
pages = "1--13",
journal = "IEEE Transactions on Power Electronics",
issn = "0885-8993",

}

TY - JOUR

T1 - A transition arm modular multilevel universal pulse-waveform generator for electroporation applications

AU - Elgenedy, Mohamed A.

AU - Badawy, Ahmed

AU - Ahmed, Shehab

AU - Williams, Barry W.

N1 - © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PY - 2017/1/16

Y1 - 2017/1/16

N2 - High voltage (HV) pulses are used in electroporation to subject pulsed electric field (PEF) onto a sample under treatment. Pulse-waveform shape, voltage magnitude, pulse duration, and pulse repetition rate are the basic controllable variables required for particular PEF application. In practice, a custom-made pulse generator is dedicated for each PEF application with limited flexibility in changing these variables. In this paper, a universal pulse-waveform generator (UPG) is proposed, where the controller software-algorithm can manipulate a basic generated multilevel pulse-waveform to emulate many different PEF pulse-waveforms. The commonly used PEF HV pulse-waveforms can be generated as bipolar or monopolar with controllable pulse durations, repetition times, and voltage magnitudes. The UPG has the ability to generate multilevel pulses that have controllable dv/dt which allow reduction of the electromagnetic interference (EMI) generated by the converter. The UPG topology is based on half-bridge modular multilevel converter (HB-MMC) cells forming two transition arms in conjunction with two bi-state arms, together creating an H-bridge. The HB-MMC cell-capacitors provide a controllable energy source which charge from the dc input supply and discharge across the load, while the two bi-state arms allow charging the HB-MMC cell-capacitors. Hence, the UPG topology offers modularity, redundancy, and scalability. The HB-MMC individual cell-capacitance is low and the cell-voltages are balanced by employing the sorting and rotating algorithm used in conventional HB-MMC topologies for HVDC transmission applications. The viability of the proposed UPG converter is validated by MATLAB/Simulink simulation and scaled-down experimentation.

AB - High voltage (HV) pulses are used in electroporation to subject pulsed electric field (PEF) onto a sample under treatment. Pulse-waveform shape, voltage magnitude, pulse duration, and pulse repetition rate are the basic controllable variables required for particular PEF application. In practice, a custom-made pulse generator is dedicated for each PEF application with limited flexibility in changing these variables. In this paper, a universal pulse-waveform generator (UPG) is proposed, where the controller software-algorithm can manipulate a basic generated multilevel pulse-waveform to emulate many different PEF pulse-waveforms. The commonly used PEF HV pulse-waveforms can be generated as bipolar or monopolar with controllable pulse durations, repetition times, and voltage magnitudes. The UPG has the ability to generate multilevel pulses that have controllable dv/dt which allow reduction of the electromagnetic interference (EMI) generated by the converter. The UPG topology is based on half-bridge modular multilevel converter (HB-MMC) cells forming two transition arms in conjunction with two bi-state arms, together creating an H-bridge. The HB-MMC cell-capacitors provide a controllable energy source which charge from the dc input supply and discharge across the load, while the two bi-state arms allow charging the HB-MMC cell-capacitors. Hence, the UPG topology offers modularity, redundancy, and scalability. The HB-MMC individual cell-capacitance is low and the cell-voltages are balanced by employing the sorting and rotating algorithm used in conventional HB-MMC topologies for HVDC transmission applications. The viability of the proposed UPG converter is validated by MATLAB/Simulink simulation and scaled-down experimentation.

KW - MMC

KW - power electronic converter

KW - pulse power systems

KW - electroporation

KW - high voltage

KW - modular multilevel converters

KW - transition arm

KW - pulsed electric fields

KW - pulse-waveforms generator

KW - series connected IGBTs

UR - http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=63

U2 - 10.1109/TPEL.2017.2653243

DO - 10.1109/TPEL.2017.2653243

M3 - Article

SP - 1

EP - 13

JO - IEEE Transactions on Power Electronics

T2 - IEEE Transactions on Power Electronics

JF - IEEE Transactions on Power Electronics

SN - 0885-8993

ER -