A thermoanalytical , X-ray diffraction and petrographic approach to the forensics assessment of fire-affected concrete in the United Arab Emirates

M.A. Alqassim, M.R. Jones, L.E.A. Berlouis, N. Nic Daied

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

For most fires, Forensic investigation takes place well after building materials have cooled and knowledge of the structural damage due to heat exposure can reveal the temperature reached during an incident. Recently, there have been significant changes in the characteristics of cementitious materials used in the United Arab Emirates. Few studies focus on the application of thermo-gravimetric and petrographic techniques on newly developed structures and this work aims to address this deficiency by utilising a series of parametric laboratory-based tests to assess the effects of heat on hardened concrete. Specimens were made with a design mix used for low-rise residential homes and storage facilities. The key constituents were: Portland cement (PC), crushed gabbro stone and dune sand with water/cement ratios of 0.4-0.5. Cement substitutes included slag (GGBS), and silica fume (SF) at replacement percentages of up to 50% and 4%, respectively. The concrete cubes were exposed to heat inside an electric furnace with pre-determined temperature regimes of 150°C, 300°C, 600°C and 900°C. Petrographic examination was utilised to compare the discolouration of the cooled concrete. Data derived from thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are reported in order to assess the usefulness of these techniques in fire scene investigation to differentiate between these temperature regimes.. The results from the TGA indicate that the majority of the percentage weight loss for all the mixtures occurred in the range 650-700°C, which corresponds to the decarbonation of calcium carbonate, mainly from the aggregates. The endothermic DSC peak at 70-120°C relates to the loss of evaporable water. Since both of these reactions are irreversible, this information can help fire investigators estimate the temperature history of concrete after exposure to fire. On the other hand, the portlandite in the cement matrix dehydroxylates at 450-550°C but then reforms as the concrete cools. The onset temperature for the dehydroxylation of the reformed mineral is always lower than in virgin samples and its enthalpy furthermore depends strongly on the thermal history of the portlandite. Thus, this feature can be used to establish the temperature to which the material was exposed to during a fire incident.
LanguageEnglish
Pages82-88
Number of pages7
JournalForensic Science International
Volume264
Early online date19 Mar 2016
DOIs
Publication statusPublished - 31 Jul 2016

Fingerprint

United Arab Emirates
X-Ray Diffraction
Temperature
Hot Temperature
Differential Scanning Calorimetry
Water
Calcium Carbonate
Silicon Dioxide
Minerals
Weight Loss
History
Research Personnel

Keywords

  • forensic investigation
  • concrete
  • fire
  • thermal analysis
  • X-ray diffraction
  • colour change

Cite this

@article{b73c980da77b47caa9a922377acdcaf4,
title = "A thermoanalytical , X-ray diffraction and petrographic approach to the forensics assessment of fire-affected concrete in the United Arab Emirates",
abstract = "For most fires, Forensic investigation takes place well after building materials have cooled and knowledge of the structural damage due to heat exposure can reveal the temperature reached during an incident. Recently, there have been significant changes in the characteristics of cementitious materials used in the United Arab Emirates. Few studies focus on the application of thermo-gravimetric and petrographic techniques on newly developed structures and this work aims to address this deficiency by utilising a series of parametric laboratory-based tests to assess the effects of heat on hardened concrete. Specimens were made with a design mix used for low-rise residential homes and storage facilities. The key constituents were: Portland cement (PC), crushed gabbro stone and dune sand with water/cement ratios of 0.4-0.5. Cement substitutes included slag (GGBS), and silica fume (SF) at replacement percentages of up to 50{\%} and 4{\%}, respectively. The concrete cubes were exposed to heat inside an electric furnace with pre-determined temperature regimes of 150°C, 300°C, 600°C and 900°C. Petrographic examination was utilised to compare the discolouration of the cooled concrete. Data derived from thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are reported in order to assess the usefulness of these techniques in fire scene investigation to differentiate between these temperature regimes.. The results from the TGA indicate that the majority of the percentage weight loss for all the mixtures occurred in the range 650-700°C, which corresponds to the decarbonation of calcium carbonate, mainly from the aggregates. The endothermic DSC peak at 70-120°C relates to the loss of evaporable water. Since both of these reactions are irreversible, this information can help fire investigators estimate the temperature history of concrete after exposure to fire. On the other hand, the portlandite in the cement matrix dehydroxylates at 450-550°C but then reforms as the concrete cools. The onset temperature for the dehydroxylation of the reformed mineral is always lower than in virgin samples and its enthalpy furthermore depends strongly on the thermal history of the portlandite. Thus, this feature can be used to establish the temperature to which the material was exposed to during a fire incident.",
keywords = "forensic investigation , concrete, fire, thermal analysis, X-ray diffraction, colour change",
author = "M.A. Alqassim and M.R. Jones and L.E.A. Berlouis and {Nic Daied}, N.",
year = "2016",
month = "7",
day = "31",
doi = "10.1016/j.forsciint.2016.03.015",
language = "English",
volume = "264",
pages = "82--88",
journal = "Forensic Science International",
issn = "0379-0738",

}

A thermoanalytical , X-ray diffraction and petrographic approach to the forensics assessment of fire-affected concrete in the United Arab Emirates. / Alqassim, M.A.; Jones, M.R. ; Berlouis, L.E.A.; Nic Daied, N.

In: Forensic Science International, Vol. 264, 31.07.2016, p. 82-88.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A thermoanalytical , X-ray diffraction and petrographic approach to the forensics assessment of fire-affected concrete in the United Arab Emirates

AU - Alqassim, M.A.

AU - Jones, M.R.

AU - Berlouis, L.E.A.

AU - Nic Daied, N.

PY - 2016/7/31

Y1 - 2016/7/31

N2 - For most fires, Forensic investigation takes place well after building materials have cooled and knowledge of the structural damage due to heat exposure can reveal the temperature reached during an incident. Recently, there have been significant changes in the characteristics of cementitious materials used in the United Arab Emirates. Few studies focus on the application of thermo-gravimetric and petrographic techniques on newly developed structures and this work aims to address this deficiency by utilising a series of parametric laboratory-based tests to assess the effects of heat on hardened concrete. Specimens were made with a design mix used for low-rise residential homes and storage facilities. The key constituents were: Portland cement (PC), crushed gabbro stone and dune sand with water/cement ratios of 0.4-0.5. Cement substitutes included slag (GGBS), and silica fume (SF) at replacement percentages of up to 50% and 4%, respectively. The concrete cubes were exposed to heat inside an electric furnace with pre-determined temperature regimes of 150°C, 300°C, 600°C and 900°C. Petrographic examination was utilised to compare the discolouration of the cooled concrete. Data derived from thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are reported in order to assess the usefulness of these techniques in fire scene investigation to differentiate between these temperature regimes.. The results from the TGA indicate that the majority of the percentage weight loss for all the mixtures occurred in the range 650-700°C, which corresponds to the decarbonation of calcium carbonate, mainly from the aggregates. The endothermic DSC peak at 70-120°C relates to the loss of evaporable water. Since both of these reactions are irreversible, this information can help fire investigators estimate the temperature history of concrete after exposure to fire. On the other hand, the portlandite in the cement matrix dehydroxylates at 450-550°C but then reforms as the concrete cools. The onset temperature for the dehydroxylation of the reformed mineral is always lower than in virgin samples and its enthalpy furthermore depends strongly on the thermal history of the portlandite. Thus, this feature can be used to establish the temperature to which the material was exposed to during a fire incident.

AB - For most fires, Forensic investigation takes place well after building materials have cooled and knowledge of the structural damage due to heat exposure can reveal the temperature reached during an incident. Recently, there have been significant changes in the characteristics of cementitious materials used in the United Arab Emirates. Few studies focus on the application of thermo-gravimetric and petrographic techniques on newly developed structures and this work aims to address this deficiency by utilising a series of parametric laboratory-based tests to assess the effects of heat on hardened concrete. Specimens were made with a design mix used for low-rise residential homes and storage facilities. The key constituents were: Portland cement (PC), crushed gabbro stone and dune sand with water/cement ratios of 0.4-0.5. Cement substitutes included slag (GGBS), and silica fume (SF) at replacement percentages of up to 50% and 4%, respectively. The concrete cubes were exposed to heat inside an electric furnace with pre-determined temperature regimes of 150°C, 300°C, 600°C and 900°C. Petrographic examination was utilised to compare the discolouration of the cooled concrete. Data derived from thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are reported in order to assess the usefulness of these techniques in fire scene investigation to differentiate between these temperature regimes.. The results from the TGA indicate that the majority of the percentage weight loss for all the mixtures occurred in the range 650-700°C, which corresponds to the decarbonation of calcium carbonate, mainly from the aggregates. The endothermic DSC peak at 70-120°C relates to the loss of evaporable water. Since both of these reactions are irreversible, this information can help fire investigators estimate the temperature history of concrete after exposure to fire. On the other hand, the portlandite in the cement matrix dehydroxylates at 450-550°C but then reforms as the concrete cools. The onset temperature for the dehydroxylation of the reformed mineral is always lower than in virgin samples and its enthalpy furthermore depends strongly on the thermal history of the portlandite. Thus, this feature can be used to establish the temperature to which the material was exposed to during a fire incident.

KW - forensic investigation

KW - concrete

KW - fire

KW - thermal analysis

KW - X-ray diffraction

KW - colour change

UR - http://www.sciencedirect.com/science/article/pii/S0379073816301013

U2 - 10.1016/j.forsciint.2016.03.015

DO - 10.1016/j.forsciint.2016.03.015

M3 - Article

VL - 264

SP - 82

EP - 88

JO - Forensic Science International

T2 - Forensic Science International

JF - Forensic Science International

SN - 0379-0738

ER -