Projects per year
Abstract
Objectives To assess the methodological quality of prognostic model development studies pertaining to post resection prognosis of pancreatic ductal adenocarcinoma (PDAC).
Design/setting A narrative systematic review of international peer reviewed journals
Data source Searches were conducted of: MEDLINE, Embase, PubMed, Cochrane database and Google Scholar for predictive modelling studies applied to the outcome of prognosis for patients with PDAC post resection. Predictive modelling studies in this context included prediction model development studies with and without external validation and external validation studies with model updating. Data was extracted following the Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) checklist.
Primary and secondary outcome measures Primary outcomes were all components of the CHARMS checklist. Secondary outcomes included frequency of variables included across predictive models.
Results 263 studies underwent full text review. 15 studies met the inclusion criteria. 3 studies underwent external validation. Multivariable Cox proportional hazard regression was the most commonly employed modelling method (n=13). 10 studies were based on single centre databases. Five used prospective databases, seven used retrospective databases and three used cancer data registry. The mean number of candidate predictors was 19.47 (range 7 to 50). The most commonly included variables were tumour grade (n=9), age (n=8), tumour stage (n=7) and tumour size (n=5). Mean sample size was 1367 (range 50 to 6400). 5 studies reached statistical power. None of the studies reported blinding of outcome measurement for predictor values. The most common form of presentation was nomograms (n=5) and prognostic scores (n=5) followed by prognostic calculators (n=3) and prognostic index (n=2).
Conclusions Areas for improvement in future predictive model development have been highlighted relating to: general aspects of model development and reporting, applicability of models and sources of bias.
Design/setting A narrative systematic review of international peer reviewed journals
Data source Searches were conducted of: MEDLINE, Embase, PubMed, Cochrane database and Google Scholar for predictive modelling studies applied to the outcome of prognosis for patients with PDAC post resection. Predictive modelling studies in this context included prediction model development studies with and without external validation and external validation studies with model updating. Data was extracted following the Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) checklist.
Primary and secondary outcome measures Primary outcomes were all components of the CHARMS checklist. Secondary outcomes included frequency of variables included across predictive models.
Results 263 studies underwent full text review. 15 studies met the inclusion criteria. 3 studies underwent external validation. Multivariable Cox proportional hazard regression was the most commonly employed modelling method (n=13). 10 studies were based on single centre databases. Five used prospective databases, seven used retrospective databases and three used cancer data registry. The mean number of candidate predictors was 19.47 (range 7 to 50). The most commonly included variables were tumour grade (n=9), age (n=8), tumour stage (n=7) and tumour size (n=5). Mean sample size was 1367 (range 50 to 6400). 5 studies reached statistical power. None of the studies reported blinding of outcome measurement for predictor values. The most common form of presentation was nomograms (n=5) and prognostic scores (n=5) followed by prognostic calculators (n=3) and prognostic index (n=2).
Conclusions Areas for improvement in future predictive model development have been highlighted relating to: general aspects of model development and reporting, applicability of models and sources of bias.
Original language | English |
---|---|
Article number | e027192 |
Number of pages | 9 |
Journal | BMJ Open |
Volume | 9 |
Issue number | 8 |
DOIs | |
Publication status | Published - 21 Aug 2019 |
Keywords
- prognostic model development
- pancreatic ductal adenocarcinoma
- PDAC
- post resection
Fingerprint
Dive into the research topics of 'A systematic review of methodological quality of model development studies predicting prognostic outcome for resectable pancreatic cancer'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Improving Outcomes for Patients with Pancreatic Cancer
van der Meer, R. (Principal Investigator) & Morton, A. (Co-investigator)
1/08/16 → 31/07/19
Project: Research
-
Digital twins in healthcare
van der Meer, R., 24 Jun 2024. 12 p.Research output: Contribution to conference › Keynote
Open AccessFile -
Computer simulated comparison of neoadjuvant versus upfront surgery for resectable pancreatic cancer: the application of machine-learning algorithms to support personalised decision-making
Bradley, A., Van Der Meer, R. & McKay, C., 7 Dec 2020, In: British Journal of Surgery. 107, S4, p. 141-141 1 p., WS15.014.Research output: Contribution to journal › Conference abstract › peer-review
Open Access -
Optimising outcomes for resectable pancreatic cancer by learning lessons from military strategy and the stockmarket: creation of a prognostic Bayesian belief network that makes personalised pre and post-operative predictions of outcome across competing treatment strategies
Bradley, A., van der Meer, R. & McKay, C. J., 7 Dec 2020, In: British Journal of Surgery. 107, S4, p. 141 1 p., WS15.015.Research output: Contribution to journal › Conference abstract › peer-review
Activities
- 1 Participation in workshop, seminar, course
-
Inspiring Innovation in Cancer Care III
van der Meer, R. (Participant)
14 Nov 2023Activity: Participating in or organising an event types › Participation in workshop, seminar, course