A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV

K. T. Behm, J. M. Cole, A. S. Joglekar, E. Gerstmayr, J. C. Wood, C. D. Baird, T. G. Blackburn, M. Duff, C. Harvey, A. Ilderton, S. Kuschel, S. P. D. Mangles, M. Marklund, P. McKenna, C. D. Murphy, Z. Najmudin, K. Poder, C. P. Ridgers, G. Sarri, G. M. Samarin & 5 others D. Symes, J. Warwick, M. Zepf, K. Krushelnick, A. G. R. Thomas

Research output: Contribution to journalArticle

Abstract

We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.
LanguageEnglish
Article number113303
Number of pages11
JournalReview of Scientific Instruments
Volume89
DOIs
Publication statusPublished - 6 Nov 2018

Fingerprint

Gamma rays
Spectrometers
Photons
gamma rays
spectrometers
Phosphors
Crystals
scintillation counters
photons
Cesium iodide
pulses
Gamma ray spectrometers
cesium iodides
crystals
Compton scattering
gamma ray beams
gamma ray spectrometers
Angular distribution
gamma ray spectra
Deconvolution

Keywords

  • gamma-ray spectrometer
  • laser wakefield accelerated electron beam
  • Compton scattering experiments

Cite this

Behm, K. T., Cole, J. M., Joglekar, A. S., Gerstmayr, E., Wood, J. C., Baird, C. D., ... Thomas, A. G. R. (2018). A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. Review of Scientific Instruments, 89, [113303]. https://doi.org/10.1063/1.5056248
Behm, K. T. ; Cole, J. M. ; Joglekar, A. S. ; Gerstmayr, E. ; Wood, J. C. ; Baird, C. D. ; Blackburn, T. G. ; Duff, M. ; Harvey, C. ; Ilderton, A. ; Kuschel, S. ; Mangles, S. P. D. ; Marklund, M. ; McKenna, P. ; Murphy, C. D. ; Najmudin, Z. ; Poder, K. ; Ridgers, C. P. ; Sarri, G. ; Samarin, G. M. ; Symes, D. ; Warwick, J. ; Zepf, M. ; Krushelnick, K. ; Thomas, A. G. R. / A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. In: Review of Scientific Instruments. 2018 ; Vol. 89.
@article{e25152bf82c7408fbe1873592082a378,
title = "A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV",
abstract = "We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.",
keywords = "gamma-ray spectrometer, laser wakefield accelerated electron beam, Compton scattering experiments",
author = "Behm, {K. T.} and Cole, {J. M.} and Joglekar, {A. S.} and E. Gerstmayr and Wood, {J. C.} and Baird, {C. D.} and Blackburn, {T. G.} and M. Duff and C. Harvey and A. Ilderton and S. Kuschel and Mangles, {S. P. D.} and M. Marklund and P. McKenna and Murphy, {C. D.} and Z. Najmudin and K. Poder and Ridgers, {C. P.} and G. Sarri and Samarin, {G. M.} and D. Symes and J. Warwick and M. Zepf and K. Krushelnick and Thomas, {A. G. R.}",
year = "2018",
month = "11",
day = "6",
doi = "10.1063/1.5056248",
language = "English",
volume = "89",
journal = "Review of Scientific Instruments",
issn = "0034-6748",

}

Behm, KT, Cole, JM, Joglekar, AS, Gerstmayr, E, Wood, JC, Baird, CD, Blackburn, TG, Duff, M, Harvey, C, Ilderton, A, Kuschel, S, Mangles, SPD, Marklund, M, McKenna, P, Murphy, CD, Najmudin, Z, Poder, K, Ridgers, CP, Sarri, G, Samarin, GM, Symes, D, Warwick, J, Zepf, M, Krushelnick, K & Thomas, AGR 2018, 'A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV' Review of Scientific Instruments, vol. 89, 113303. https://doi.org/10.1063/1.5056248

A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. / Behm, K. T.; Cole, J. M.; Joglekar, A. S.; Gerstmayr, E.; Wood, J. C.; Baird, C. D.; Blackburn, T. G.; Duff, M.; Harvey, C.; Ilderton, A.; Kuschel, S.; Mangles, S. P. D.; Marklund, M.; McKenna, P.; Murphy, C. D.; Najmudin, Z.; Poder, K.; Ridgers, C. P.; Sarri, G.; Samarin, G. M.; Symes, D.; Warwick, J.; Zepf, M.; Krushelnick, K.; Thomas, A. G. R.

In: Review of Scientific Instruments, Vol. 89, 113303, 06.11.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV

AU - Behm, K. T.

AU - Cole, J. M.

AU - Joglekar, A. S.

AU - Gerstmayr, E.

AU - Wood, J. C.

AU - Baird, C. D.

AU - Blackburn, T. G.

AU - Duff, M.

AU - Harvey, C.

AU - Ilderton, A.

AU - Kuschel, S.

AU - Mangles, S. P. D.

AU - Marklund, M.

AU - McKenna, P.

AU - Murphy, C. D.

AU - Najmudin, Z.

AU - Poder, K.

AU - Ridgers, C. P.

AU - Sarri, G.

AU - Samarin, G. M.

AU - Symes, D.

AU - Warwick, J.

AU - Zepf, M.

AU - Krushelnick, K.

AU - Thomas, A. G. R.

PY - 2018/11/6

Y1 - 2018/11/6

N2 - We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.

AB - We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.

KW - gamma-ray spectrometer

KW - laser wakefield accelerated electron beam

KW - Compton scattering experiments

UR - https://aip.scitation.org/journal/rsi

U2 - 10.1063/1.5056248

DO - 10.1063/1.5056248

M3 - Article

VL - 89

JO - Review of Scientific Instruments

T2 - Review of Scientific Instruments

JF - Review of Scientific Instruments

SN - 0034-6748

M1 - 113303

ER -