A rational spline model approximation and control of output probability density functions for dynamic stochastic systems

H. Wang, H. Yue

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

This paper presents a new method to model and control the shape of the output probability density functions for dynamic stochastic systems subjected to arbitrary bounded random input. A new rational model is proposed to approximate the output probability density function of the system. This is then followed by the design of a novel nonlinear controller, which guarantees the monotonic decreasing of the functional norm of the difference between the measured probability density function and its target distribution. This leads to a desired tracking performance for the output probability density function. A simple example is utilized to demonstrate the use of the proposed modelling and control algorithm and encouraging results have been obtained.
LanguageEnglish
Pages93-105
Number of pages13
JournalTransactions of the Institute of Measurement and Control
Volume25
Issue number2
DOIs
Publication statusPublished - 2003

Fingerprint

Stochastic systems
splines
probability density functions
Splines
Probability density function
output
approximation
norms
controllers
Controllers

Keywords

  • stochastic systems
  • rational spline model
  • dynamic stochastic systems

Cite this

@article{919c5a4004864e229523e002ae8c7893,
title = "A rational spline model approximation and control of output probability density functions for dynamic stochastic systems",
abstract = "This paper presents a new method to model and control the shape of the output probability density functions for dynamic stochastic systems subjected to arbitrary bounded random input. A new rational model is proposed to approximate the output probability density function of the system. This is then followed by the design of a novel nonlinear controller, which guarantees the monotonic decreasing of the functional norm of the difference between the measured probability density function and its target distribution. This leads to a desired tracking performance for the output probability density function. A simple example is utilized to demonstrate the use of the proposed modelling and control algorithm and encouraging results have been obtained.",
keywords = "stochastic systems , rational spline model , dynamic stochastic systems",
author = "H. Wang and H. Yue",
year = "2003",
doi = "10.1191/0142331203tm076oa",
language = "English",
volume = "25",
pages = "93--105",
journal = "Transactions of the Institute of Measurement and Control",
issn = "0142-3312",
number = "2",

}

TY - JOUR

T1 - A rational spline model approximation and control of output probability density functions for dynamic stochastic systems

AU - Wang, H.

AU - Yue, H.

PY - 2003

Y1 - 2003

N2 - This paper presents a new method to model and control the shape of the output probability density functions for dynamic stochastic systems subjected to arbitrary bounded random input. A new rational model is proposed to approximate the output probability density function of the system. This is then followed by the design of a novel nonlinear controller, which guarantees the monotonic decreasing of the functional norm of the difference between the measured probability density function and its target distribution. This leads to a desired tracking performance for the output probability density function. A simple example is utilized to demonstrate the use of the proposed modelling and control algorithm and encouraging results have been obtained.

AB - This paper presents a new method to model and control the shape of the output probability density functions for dynamic stochastic systems subjected to arbitrary bounded random input. A new rational model is proposed to approximate the output probability density function of the system. This is then followed by the design of a novel nonlinear controller, which guarantees the monotonic decreasing of the functional norm of the difference between the measured probability density function and its target distribution. This leads to a desired tracking performance for the output probability density function. A simple example is utilized to demonstrate the use of the proposed modelling and control algorithm and encouraging results have been obtained.

KW - stochastic systems

KW - rational spline model

KW - dynamic stochastic systems

U2 - 10.1191/0142331203tm076oa

DO - 10.1191/0142331203tm076oa

M3 - Article

VL - 25

SP - 93

EP - 105

JO - Transactions of the Institute of Measurement and Control

T2 - Transactions of the Institute of Measurement and Control

JF - Transactions of the Institute of Measurement and Control

SN - 0142-3312

IS - 2

ER -