A posteriori error estimation for non-conforming quadrilateral finite elements

M. Ainsworth

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

We derive an a posteriori error estimator giving a computable upper bound on the error in the energy norm for finite element approximation using the non-conforming rotated Q1 finite element. It is shown that the estimator also gives a local lower bound up to a generic constant. The bounds do not require additional assumptions on the regularity of the true solution of the underlying elliptic problem and, the mesh is only required to be locally quasi- uniform and may consist of general, non-a±ne convex quadrilateral elements.
LanguageEnglish
Pages1-18
Number of pages17
JournalInternational Journal of Numerical Analysis and Modeling
Volume2
Issue number1
Publication statusPublished - 2005

Fingerprint

A Posteriori Error Estimation
Quadrilateral Element
A Posteriori Error Estimators
Finite Element Approximation
Elliptic Problems
Error analysis
Regularity
Mesh
Finite Element
Lower bound
Upper bound
Norm
Energy

Keywords

  • posteriori error estimation
  • non-conforming finite elements
  • rotated Q1 element
  • non-affine quadrilateral elements
  • numerical analysis

Cite this

@article{7c7846b31d974df2ac4b4f16376eb6ad,
title = "A posteriori error estimation for non-conforming quadrilateral finite elements",
abstract = "We derive an a posteriori error estimator giving a computable upper bound on the error in the energy norm for finite element approximation using the non-conforming rotated Q1 finite element. It is shown that the estimator also gives a local lower bound up to a generic constant. The bounds do not require additional assumptions on the regularity of the true solution of the underlying elliptic problem and, the mesh is only required to be locally quasi- uniform and may consist of general, non-a±ne convex quadrilateral elements.",
keywords = "posteriori error estimation, non-conforming finite elements, rotated Q1 element, non-affine quadrilateral elements, numerical analysis",
author = "M. Ainsworth",
year = "2005",
language = "English",
volume = "2",
pages = "1--18",
journal = "International Journal of Numerical Analysis and Modeling",
issn = "1705-5105",
publisher = "University of Alberta",
number = "1",

}

A posteriori error estimation for non-conforming quadrilateral finite elements. / Ainsworth, M.

In: International Journal of Numerical Analysis and Modeling, Vol. 2, No. 1, 2005, p. 1-18.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A posteriori error estimation for non-conforming quadrilateral finite elements

AU - Ainsworth, M.

PY - 2005

Y1 - 2005

N2 - We derive an a posteriori error estimator giving a computable upper bound on the error in the energy norm for finite element approximation using the non-conforming rotated Q1 finite element. It is shown that the estimator also gives a local lower bound up to a generic constant. The bounds do not require additional assumptions on the regularity of the true solution of the underlying elliptic problem and, the mesh is only required to be locally quasi- uniform and may consist of general, non-a±ne convex quadrilateral elements.

AB - We derive an a posteriori error estimator giving a computable upper bound on the error in the energy norm for finite element approximation using the non-conforming rotated Q1 finite element. It is shown that the estimator also gives a local lower bound up to a generic constant. The bounds do not require additional assumptions on the regularity of the true solution of the underlying elliptic problem and, the mesh is only required to be locally quasi- uniform and may consist of general, non-a±ne convex quadrilateral elements.

KW - posteriori error estimation

KW - non-conforming finite elements

KW - rotated Q1 element

KW - non-affine quadrilateral elements

KW - numerical analysis

UR - http://www.math.ualberta.ca/ijnam/Volume-2-2005/No-1-05/2005-01-01.pdf

M3 - Article

VL - 2

SP - 1

EP - 18

JO - International Journal of Numerical Analysis and Modeling

T2 - International Journal of Numerical Analysis and Modeling

JF - International Journal of Numerical Analysis and Modeling

SN - 1705-5105

IS - 1

ER -