A peridynamic based machine learning model for one-dimensional and two-dimensional structures

Research output: Contribution to journalArticle

1 Downloads (Pure)

Abstract

With the rapid growth of available data and computing resources, using data-driven models is a potential approach in many scientific disciplines and engineering. However, for complex physical phenomena that have limited data, the data-driven models are lacking robustness and fail to provide good predictions. Theory-guided data science is the recent technology that can take advantage of both physics-driven and data-driven models. This study presents a novel peridynamics based machine learning model for one and two-dimensional structures. The linear relationships between the displacement of a material point and displacements of its family members and applied forces are obtained for the machine learning model by using linear regression. The numerical procedure for coupling the peridynamic model and the machine learning model is also provided. The numerical procedure for coupling the peridynamic model and the machine learning model is also provided. The accuracy of the coupled model is verified by considering various examples of a one-dimensional bar and two-dimensional plate. To further demonstrate the capabilities of the coupled model, damage prediction for a plate with a pre-existing crack, a two-dimensional representation of a three-point bending test, and a plate subjected to dynamic load are simulated.
Original languageEnglish
Number of pages33
JournalContinuum Mechanics and Thermodynamics
Early online date6 Aug 2020
DOIs
Publication statusE-pub ahead of print - 6 Aug 2020

Keywords

  • machine learning
  • peridynamics
  • fracture
  • peridynamic based machine learning
  • linear regression

Fingerprint Dive into the research topics of 'A peridynamic based machine learning model for one-dimensional and two-dimensional structures'. Together they form a unique fingerprint.

  • Equipment

  • Cite this