Abstract
Lipopolysaccharide (LPS) endotoxin is the bacterial product responsible for the clinical syndrome of Gram-negative septicemia and endotoxic shock. During sepsis, microbial antigens, such as LPS, activate monocytes and macrophages to produce several pro-inflammatory cytokines, among which tumor necrosis factor- (TNF-) appears to be very important for the development of endotoxic shock. The endotoxic properties of LPS principally reside in the lipid A (LIP A) component, which is the primary immunostimulatory center of Gram-negative bacteria. In recent years there has been a continuous effort to identify molecules able to antagonize the deleterious effects of endotoxic shock. In this study we show that a novel LIP A fraction from the LPS of Halomonas magadiensis (Hm), a Gram-negative extremophilic and alkaliphilic bacterium, significantly inhibits the synthesis of TNF- by human monocytes activated by Escherichia coli LPS. LIP A from Hm exerts these effects by interfering with E. coli LPS for activation of Toll-like receptor 4 expressed in human cells. This result defines Hm LIP A as a novel class of LPS antagonist whose structural features could be utilized for the design of compounds for the treatment of Gram-negative sepsis.
Original language | English |
---|---|
Pages (from-to) | 354-360 |
Number of pages | 7 |
Journal | European Journal of Immunology |
Volume | 36 |
DOIs | |
Publication status | Published - 2006 |
Keywords
- halomonas magadiensis
- toll-like receptor 4
- TNF-ALPHA
- Lipid A
- monocytes