A novel approach for the recognition, definition and characterization of the critical links between fluid-dynamics and soft tissue biomechanics

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Aim of the present chapter is the introduction of fundamental correlations between in vitro cultivating conditions for soft tissues (e.g., cartilaginous tissue), cell response, and resulting morphological properties of the engineered tissue in order to provide strategies for optimal integrated design of bioreactor configuration and biomaterial support that will enhance functional tissue assembly in future applications. Mathematical modeling and numerical simulations are used as relevant and suitable tools in the analysis of such complex dynamics. They are applied to introduce a rigorous framework for better recognition, definition and characterization of some specific links between the biomechanics and biochemistry of soft tissue on one side and the physicochemical features of the supporting environment on the other side, giving emphasis, in particular, to the effect of the fluid-dynamic shear stress (such attention being motivated by the recent experimental evidence that the shear stress exerted on the surface of a tissue specimen by an external moving fluid can induce changes in tissue metabolism and function). The chapter runs as follows: Available data in the literature are initially used to build a set of growth models by analogy with macromolecular crystals. Surface kinetic conditions are defined which are theoretically coupled to the transfer of mass and momentum at the specimen/culture-liquid interface. This leads to a group of differential equations for the nutrient concentration around the sample and for the evolution of tissue mass displacement. Such evolution is then numerically simulated in the context of modern moving boundary CFD (Computational Fluid Dynamics) methods (Volume-of-Fluid and Level-set techniques). Iterative comparison between the CFD simulations and available experimental data is proven to be a novel and relevant means for progressive refinement of the initial theoretically-postulated growth models and the final determination of a precise mathematical formalism for the tissue growth surface kinetics (able to provide effective solutions in practical situations). Some modern concepts such as the particular form of cellular architecture known as “tensegrity” and its role (together with that played by specific transmembrane molecules known as integrins) in determining the response of the cytoskeleton to the application of external stimuli (i.e. the mechanotransduction process) are invoked and used to elaborate some microphysical reasoning for such a mathematical formalism. Beyond relevance to the field of tissue engineering and practical applications, the present chapter also represents a relevant and typical example of situations in which nonlinearities “conspire” to form organized spatial patterns.
LanguageEnglish
Title of host publicationTissue Engineering Research Trends
EditorsGiovanni Greco
Pages1-47
Number of pages47
Publication statusPublished - 2008

Fingerprint

biodynamics
fluid dynamics
Biomechanical Phenomena
Hydrodynamics
computational fluid dynamics
shear stress
Growth
formalism
bioreactors
biochemistry
tissue engineering
fluids
nutrients
kinetics
Biocompatible Materials
Bioreactors
metabolism
Tissue Engineering
Cytoskeleton
Integrins

Keywords

  • fluid-dynamics
  • soft tissue biomechanics
  • biomechanics

Cite this

@inbook{38de581d56644026b887f2e7ca25de27,
title = "A novel approach for the recognition, definition and characterization of the critical links between fluid-dynamics and soft tissue biomechanics",
abstract = "Aim of the present chapter is the introduction of fundamental correlations between in vitro cultivating conditions for soft tissues (e.g., cartilaginous tissue), cell response, and resulting morphological properties of the engineered tissue in order to provide strategies for optimal integrated design of bioreactor configuration and biomaterial support that will enhance functional tissue assembly in future applications. Mathematical modeling and numerical simulations are used as relevant and suitable tools in the analysis of such complex dynamics. They are applied to introduce a rigorous framework for better recognition, definition and characterization of some specific links between the biomechanics and biochemistry of soft tissue on one side and the physicochemical features of the supporting environment on the other side, giving emphasis, in particular, to the effect of the fluid-dynamic shear stress (such attention being motivated by the recent experimental evidence that the shear stress exerted on the surface of a tissue specimen by an external moving fluid can induce changes in tissue metabolism and function). The chapter runs as follows: Available data in the literature are initially used to build a set of growth models by analogy with macromolecular crystals. Surface kinetic conditions are defined which are theoretically coupled to the transfer of mass and momentum at the specimen/culture-liquid interface. This leads to a group of differential equations for the nutrient concentration around the sample and for the evolution of tissue mass displacement. Such evolution is then numerically simulated in the context of modern moving boundary CFD (Computational Fluid Dynamics) methods (Volume-of-Fluid and Level-set techniques). Iterative comparison between the CFD simulations and available experimental data is proven to be a novel and relevant means for progressive refinement of the initial theoretically-postulated growth models and the final determination of a precise mathematical formalism for the tissue growth surface kinetics (able to provide effective solutions in practical situations). Some modern concepts such as the particular form of cellular architecture known as “tensegrity” and its role (together with that played by specific transmembrane molecules known as integrins) in determining the response of the cytoskeleton to the application of external stimuli (i.e. the mechanotransduction process) are invoked and used to elaborate some microphysical reasoning for such a mathematical formalism. Beyond relevance to the field of tissue engineering and practical applications, the present chapter also represents a relevant and typical example of situations in which nonlinearities “conspire” to form organized spatial patterns.",
keywords = "fluid-dynamics, soft tissue biomechanics, biomechanics",
author = "Marcello Lappa",
year = "2008",
language = "English",
isbn = "978-1-60456-264-4",
pages = "1--47",
editor = "Giovanni Greco",
booktitle = "Tissue Engineering Research Trends",

}

A novel approach for the recognition, definition and characterization of the critical links between fluid-dynamics and soft tissue biomechanics. / Lappa, Marcello.

Tissue Engineering Research Trends. ed. / Giovanni Greco. 2008. p. 1-47 Chapter 1.

Research output: Chapter in Book/Report/Conference proceedingChapter

TY - CHAP

T1 - A novel approach for the recognition, definition and characterization of the critical links between fluid-dynamics and soft tissue biomechanics

AU - Lappa, Marcello

PY - 2008

Y1 - 2008

N2 - Aim of the present chapter is the introduction of fundamental correlations between in vitro cultivating conditions for soft tissues (e.g., cartilaginous tissue), cell response, and resulting morphological properties of the engineered tissue in order to provide strategies for optimal integrated design of bioreactor configuration and biomaterial support that will enhance functional tissue assembly in future applications. Mathematical modeling and numerical simulations are used as relevant and suitable tools in the analysis of such complex dynamics. They are applied to introduce a rigorous framework for better recognition, definition and characterization of some specific links between the biomechanics and biochemistry of soft tissue on one side and the physicochemical features of the supporting environment on the other side, giving emphasis, in particular, to the effect of the fluid-dynamic shear stress (such attention being motivated by the recent experimental evidence that the shear stress exerted on the surface of a tissue specimen by an external moving fluid can induce changes in tissue metabolism and function). The chapter runs as follows: Available data in the literature are initially used to build a set of growth models by analogy with macromolecular crystals. Surface kinetic conditions are defined which are theoretically coupled to the transfer of mass and momentum at the specimen/culture-liquid interface. This leads to a group of differential equations for the nutrient concentration around the sample and for the evolution of tissue mass displacement. Such evolution is then numerically simulated in the context of modern moving boundary CFD (Computational Fluid Dynamics) methods (Volume-of-Fluid and Level-set techniques). Iterative comparison between the CFD simulations and available experimental data is proven to be a novel and relevant means for progressive refinement of the initial theoretically-postulated growth models and the final determination of a precise mathematical formalism for the tissue growth surface kinetics (able to provide effective solutions in practical situations). Some modern concepts such as the particular form of cellular architecture known as “tensegrity” and its role (together with that played by specific transmembrane molecules known as integrins) in determining the response of the cytoskeleton to the application of external stimuli (i.e. the mechanotransduction process) are invoked and used to elaborate some microphysical reasoning for such a mathematical formalism. Beyond relevance to the field of tissue engineering and practical applications, the present chapter also represents a relevant and typical example of situations in which nonlinearities “conspire” to form organized spatial patterns.

AB - Aim of the present chapter is the introduction of fundamental correlations between in vitro cultivating conditions for soft tissues (e.g., cartilaginous tissue), cell response, and resulting morphological properties of the engineered tissue in order to provide strategies for optimal integrated design of bioreactor configuration and biomaterial support that will enhance functional tissue assembly in future applications. Mathematical modeling and numerical simulations are used as relevant and suitable tools in the analysis of such complex dynamics. They are applied to introduce a rigorous framework for better recognition, definition and characterization of some specific links between the biomechanics and biochemistry of soft tissue on one side and the physicochemical features of the supporting environment on the other side, giving emphasis, in particular, to the effect of the fluid-dynamic shear stress (such attention being motivated by the recent experimental evidence that the shear stress exerted on the surface of a tissue specimen by an external moving fluid can induce changes in tissue metabolism and function). The chapter runs as follows: Available data in the literature are initially used to build a set of growth models by analogy with macromolecular crystals. Surface kinetic conditions are defined which are theoretically coupled to the transfer of mass and momentum at the specimen/culture-liquid interface. This leads to a group of differential equations for the nutrient concentration around the sample and for the evolution of tissue mass displacement. Such evolution is then numerically simulated in the context of modern moving boundary CFD (Computational Fluid Dynamics) methods (Volume-of-Fluid and Level-set techniques). Iterative comparison between the CFD simulations and available experimental data is proven to be a novel and relevant means for progressive refinement of the initial theoretically-postulated growth models and the final determination of a precise mathematical formalism for the tissue growth surface kinetics (able to provide effective solutions in practical situations). Some modern concepts such as the particular form of cellular architecture known as “tensegrity” and its role (together with that played by specific transmembrane molecules known as integrins) in determining the response of the cytoskeleton to the application of external stimuli (i.e. the mechanotransduction process) are invoked and used to elaborate some microphysical reasoning for such a mathematical formalism. Beyond relevance to the field of tissue engineering and practical applications, the present chapter also represents a relevant and typical example of situations in which nonlinearities “conspire” to form organized spatial patterns.

KW - fluid-dynamics

KW - soft tissue biomechanics

KW - biomechanics

M3 - Chapter

SN - 978-1-60456-264-4

SP - 1

EP - 47

BT - Tissue Engineering Research Trends

A2 - Greco, Giovanni

ER -