A novel 3D non-stationary channel model for 6G indoor visible light communication systems

Xiuming Zhu, Cheng-Xiang Wang, Jie Huang, Ming Chen, Harald Haas

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)
22 Downloads (Pure)

Abstract

The visible light communication (VLC) technology has attracted much attention in the research of the sixth generation (6G) communication systems. In this paper, a novel three dimensional (3D) space-time-frequency non-stationary geometry-based stochastic model (GBSM) is proposed for indoor VLC channels. The proposed VLC GBSM can capture unique indoor VLC channel characteristics such as the space-time-frequency non-stationarity caused by large light-emitting diode (LED) arrays in indoor scenarios, long travelling paths, and large bandwidths of visible light waves, respectively. In addition, the proposed model can support special radiation patterns of LEDs, 3D translational and rotational motions of the optical receiver (Rx), and can be applied to angle diversity receivers (ADRs). Key channel properties are simulated and analyzed, including the space-time-frequency correlation function (STFCF), received power, root mean square (RMS) delay spread, and path loss (PL). Simulation results verify the space-time-frequency non-stationarity in indoor VLC channels. In addition, the influence of light source radiation patterns, receiver rotations, and ADRs on channel characteristics have been investigated. Finally, the accuracy and practicality of the proposed model are validated by comparing the simulation result of channel 3dB bandwidth with the existing measurement data. The proposed channel model will play a supporting role in the design of future 6G VLC systems.

Original languageEnglish
Pages (from-to)8292-8307
Number of pages16
JournalIEEE Transactions on Wireless Communications
Volume21
Issue number10
Early online date20 Apr 2022
DOIs
Publication statusPublished - 1 Oct 2022

Keywords

  • 6G
  • antenna radiation patterns
  • channel models
  • computational modeling
  • GBSM
  • non-stationarity
  • solid modeling
  • space-time-frequency correlation functions
  • three-dimensional displays
  • visible light communication
  • visible light communications
  • wireless communication

Fingerprint

Dive into the research topics of 'A novel 3D non-stationary channel model for 6G indoor visible light communication systems'. Together they form a unique fingerprint.

Cite this