Abstract
Cutting tool rotation errors have significant influence on the machined surface quality, especially in micromilling. Precision metrology instruments are usually needed to measure the rotation error accurately. However, it is difficult to directly measure the axial error of micromilling tools due to the small diameters and ultra-high rotational speed. To predict the axial error of high speed milling tools in the actual machining conditions and avoid the use of expensive metrology instruments, a novel method is proposed in this paper to quantify the cutting tool error in the axial direction based on the tool marks generated on the machined surface. A numerical model is established to simulate the surface topography generation, and the relationship between tool marks and the cutting tool axial error is then investigated. The tool axial errors at different rotational speeds can be detected by the proposed method. The accuracy and the reliability of the proposed method are verified by machining experiments.
Original language | English |
---|---|
Article number | 111014 |
Number of pages | 9 |
Journal | Journal of Manufacturing Science and Engineering, Transactions of the ASME |
Volume | 140 |
Issue number | 11 |
Early online date | 31 Aug 2018 |
DOIs | |
Publication status | Published - 1 Nov 2018 |
Funding
• Project (HIT.NSRIF.2017029) supported by Natural Scien-tific Research Innovation Foundation in Harbin Institute of Technology and the Engineering and Physical Sciences Research Council (EP/M020657/1). • Young Scientists Fund National Natural Science Foundation of China (Grant No.51505107).
Keywords
- axial error
- milling
- surface prediction
- tool marks
- tool runout