Projects per year
Abstract
Large-scale computational screening has the potential to translate the tailorability of metal-organic frameworks (MOFs) into actual applications, but requires the availability of accurate forcefields. Unfortunately, conventional molecular models fail to correctly describe interactions of adsorbates with coordinatively unsaturated sites (CUS) present in a large number of MOFs. Here, we confirm the failure of these models for a prototypical polar adsorbate, carbon monoxide, and show that simply adjusting their parameters leads to poor agreement with experiment isotherms when outside the fitting conditions. Building upon our previous work on non-polar hydrocarbons, we propose a new approach that combines quantum mechanical Density Functional Theory (DFT) with Monte Carlo simulations to rigorously account for specific interactions at the CUS. By explicitly including electrostatic interactions and employing accurate DFT functionals that describe dispersion interactions, our modeling approach becomes generally applicable to both polar and non-polar molecules. We demonstrate that this CUS model leads to substantial improvement in carbon monoxide adsorption isotherm predictions, and correctly captures the coordination binding mechanism. Furthermore, the model retains the transferability demonstrated in our previous work. This paper represents a major stepping stone in the development of a robust, transferable and generally applicable approach to describe the complex interactions between gas molecules and CUS, with great potential for use in large scale screening studies.
Original language | English |
---|---|
Pages (from-to) | 3544–3553 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry Letters |
Volume | 9 |
Issue number | 12 |
Early online date | 10 Jun 2018 |
DOIs | |
Publication status | Published - 21 Jun 2018 |
Keywords
- nanomaterials
- MOFs
- density function theory
Fingerprint
Dive into the research topics of 'A new model for predicting adsorption of polar molecules in MOFs with unsaturated metal sites'. Together they form a unique fingerprint.Profiles
Projects
- 1 Finished
-
Doctoral Training Partnership (DTA - University of Strathclyde) | Campbell, Christopher
Jorge, M., Fletcher, A. & Campbell, C.
EPSRC (Engineering and Physical Sciences Research Council)
1/10/14 → 8/05/18
Project: Research Studentship - Internally Allocated
Datasets
-
Data for: "A new model for predicting carbon monoxide adsorption in MOFs with Unsaturated Metal Sites"
Campbell, C. (Creator) & Jorge, M. (Supervisor), University of Strathclyde, 19 Mar 2018
DOI: 10.15129/9aceafff-a12f-421d-8317-0fa073ed35b4
Dataset