A new model for predicting adsorption of polar molecules in MOFs with unsaturated metal sites

Christopher Campbell, José R.B. Gomes, Michael Fischer, Miguel Jorge

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)
55 Downloads (Pure)

Abstract

Large-scale computational screening has the potential to translate the tailorability of metal-organic frameworks (MOFs) into actual applications, but requires the availability of accurate forcefields. Unfortunately, conventional molecular models fail to correctly describe interactions of adsorbates with coordinatively unsaturated sites (CUS) present in a large number of MOFs. Here, we confirm the failure of these models for a prototypical polar adsorbate, carbon monoxide, and show that simply adjusting their parameters leads to poor agreement with experiment isotherms when outside the fitting conditions. Building upon our previous work on non-polar hydrocarbons, we propose a new approach that combines quantum mechanical Density Functional Theory (DFT) with Monte Carlo simulations to rigorously account for specific interactions at the CUS. By explicitly including electrostatic interactions and employing accurate DFT functionals that describe dispersion interactions, our modeling approach becomes generally applicable to both polar and non-polar molecules. We demonstrate that this CUS model leads to substantial improvement in carbon monoxide adsorption isotherm predictions, and correctly captures the coordination binding mechanism. Furthermore, the model retains the transferability demonstrated in our previous work. This paper represents a major stepping stone in the development of a robust, transferable and generally applicable approach to describe the complex interactions between gas molecules and CUS, with great potential for use in large scale screening studies.
Original languageEnglish
Pages (from-to)3544–3553
Number of pages10
JournalJournal of Physical Chemistry Letters
Volume9
Issue number12
Early online date10 Jun 2018
DOIs
Publication statusPublished - 21 Jun 2018

Keywords

  • nanomaterials
  • MOFs
  • density function theory

Fingerprint

Dive into the research topics of 'A new model for predicting adsorption of polar molecules in MOFs with unsaturated metal sites'. Together they form a unique fingerprint.

Cite this