A new algorithm of SAR image target recognition based on improved deep convolutional neural network

Fei Gao, Teng Huang, Jinping Sun, Jun Wang, Amir Hussain, Erfu Yang

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)
118 Downloads (Pure)


Background: To effectively make use of deep learning technology automatic feature extraction ability, and enhance the ability of depth learning method to learn and recognize features, this paper proposed a deep learning algorithm combining Deep Convolutional Neural Network (DCNN) trained with an improved cost function and Support Vector Machine (SVM). Methods: The class separation information, which explicitly facilitates intra-class compactness and interclass separability in the process of learning features, is added to an improved cost function as a regularization term to enhance the feature extraction ability of DCNN. Then the improved DCNN is applied to learn the features of SAR images. Finally, SVM is utilized to map the features into output labels. Results: Experiments are performed on SAR image data in Moving and Stationary Target Acquisition and Recognition (MSTAR) database. The experiment results prove the effectiveness of our method, achieving an average accuracy of 99% on ten types of targets, some variants, and some articulated targets. Conclusion: It proves that our method is effective and CNN enjoys a certain potential to be applied in SAR image target recognition.
Original languageEnglish
Number of pages16
JournalCognitive Computation
Early online date26 Jun 2018
Publication statusE-pub ahead of print - 26 Jun 2018


  • synthetic aperture radar (SAR) images
  • automatic target recognition (ATR)
  • deep convolutional neural Network (DCNN)
  • support vector machine (SVM)
  • class separation information


Dive into the research topics of 'A new algorithm of SAR image target recognition based on improved deep convolutional neural network'. Together they form a unique fingerprint.

Cite this