Abstract
In situ 31P NMR spectroscopic studies of the reaction of the primary diphosphine 1,2-(PH2)2-C6H4 with the mixed-metal base system nBuLi/Sb(NMe2)3, combined with X-ray structural investigations, strongly support a mechanism involving a series of deprotonation steps followed by antimony-mediated reductive C-P bond cleavage. The central intermediate in this reaction is the tetraphosphide dianion [C6H4P2]22- ([4]) from which the final products, the 1,2,3-triphospholide anion [C6H4P3]- (3) and [PhPHLi] (8·Li), are evolved. An EPR spectrocopic study suggests that homolytic C-P bond cleavage is likely to be involved in this final step.
Original language | English |
---|---|
Pages (from-to) | 6454-6460 |
Number of pages | 6 |
Journal | Dalton Transactions |
Issue number | 45 |
DOIs | |
Publication status | Published - 2008 |
Keywords
- spectroscopic studies
- c-p bond cleavage