Abstract
In an electric power system with a high penetration of wind power, incoming power ramps pose a serious threat to the power system. To adopt suitable response strategies for wind power ramps, it is important to predict them accurately and in a timely manner. Since power ramps are caused by various factors, their occurrence have irregular characteristics and vary by location, bringing great difficulty in forecasting. To solve this problem, a hybrid forecasting model OT-SVM (Orthogonal Test and Support Vector Machine) was developed in this paper, which combines an orthogonal test with a support vector machine. A novel factor analysis method was established based on the theory of the orthogonal test (OT), and applied to determine the optimal
inputs of a support vector machine (SVM). The effectiveness of OT-SVM was tested with three wind farms in China, while comparing the results with other related methods. The results show that the proposed OT-SVM has the highest accuracy covering different input numbers and time resolutions. In addition, a novel evaluation index MAI (Mean Accuracy Index) was proposed, considering both the missed ramps and false ramps, which can be used as a supplementary index for CSI.
inputs of a support vector machine (SVM). The effectiveness of OT-SVM was tested with three wind farms in China, while comparing the results with other related methods. The results show that the proposed OT-SVM has the highest accuracy covering different input numbers and time resolutions. In addition, a novel evaluation index MAI (Mean Accuracy Index) was proposed, considering both the missed ramps and false ramps, which can be used as a supplementary index for CSI.
Original language | English |
---|---|
Pages (from-to) | 451-457 |
Number of pages | 7 |
Journal | IEEE Transactions on Sustainable Energy |
Volume | 8 |
Issue number | 2 |
Early online date | 31 Aug 2016 |
DOIs | |
Publication status | Published - Apr 2017 |
Keywords
- wind power ramp forecasting Orthogonal test
- multi-factor analysis
- large-scale integration of wind power
- meteorological factors
- statistical analysis
- support vector machine