## Abstract

The distance-based critical node problem involves identifying a subset of nodes in a network whose removal minimises a pre-defined distance-based connectivity measure. Having the classical critical node problem as a special case, the distance-based critical node problem is computationally challenging. In this paper, we study the distance-based critical node problem from a heuristic algorithm perspective. We consider the distance-based connectivity objective whose goal is to minimise the number of node pairs connected by a path of length at most k, subject to budgetary constraints.

We propose a centrality based heuristic which combines a backbone-based crossover procedure to generate good offspring solutions and a centrality-based neighbourhood search to improve the solution. Extensive computational experiments on real-world and synthetic graphs show the effectiveness of the developed heuristic in generating good solutions when compared to exact solution. Our empirical results also provide useful insights for future algorithm development.

We propose a centrality based heuristic which combines a backbone-based crossover procedure to generate good offspring solutions and a centrality-based neighbourhood search to improve the solution. Extensive computational experiments on real-world and synthetic graphs show the effectiveness of the developed heuristic in generating good solutions when compared to exact solution. Our empirical results also provide useful insights for future algorithm development.

Original language | English |
---|---|

Pages (from-to) | 1-18 |

Number of pages | 18 |

Journal | Journal of the Operational Research Society |

Publication status | Accepted/In press - 29 Mar 2021 |

## Keywords

- distance-based critical node problem
- hop distance
- heuristics
- centrality
- breadth first search