Projects per year
Abstract
We propose and analyse a general tensor-based framework for incorporating second-order features into network measures. This approach allows us to combine traditional pairwise links with information that records whether triples of nodes are involved in wedges or triangles. Our treatment covers classical spectral methods and recently proposed cases from the literature, but we also identify many interesting extensions. In particular, we define a mutually reinforcing (spectral) version of the classical clustering coefficient. The underlying object of study is a constrained nonlinear eigenvalue problem associated with a cubic tensor. Using recent results from nonlinear Perron–Frobenius theory, we establish existence and uniqueness under appropriate conditions, and show that the new spectral measures can be computed efficiently with a nonlinear power method. To illustrate the added value of the new formulation, we analyse the measures on a class of synthetic networks. We also give computational results on centrality and link prediction for real-world networks.
Original language | English |
---|---|
Number of pages | 21 |
Journal | Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences |
Volume | 476 |
Issue number | 2236 |
DOIs | |
Publication status | Published - 31 Mar 2020 |
Keywords
- link prediction
- clustering coefficient
- higher order network analysis
- tensor
- hypergraph
- Perron–Frobenius theory
Fingerprint
Dive into the research topics of 'A framework for second order eigenvector centralities and clustering coefficients'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Don't look back -- non-backtracking walks in complex networks (ECF)
Arrigo, F. (Principal Investigator)
1/05/19 → 30/04/22
Project: Research Fellowship
-
Data Analytics for Future Cities
Higham, D. (Principal Investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/01/15 → 31/12/19
Project: Research Fellowship