A domain decomposition approach to finite volume solutions of the Euler equations on unstructured triangular meshes

Victoria Dolean, Stéphane Lanteri

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


We report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two-dimensional compressible inviscid flows. The starting point is a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo-time step requires the solution of a sparse linear system for the flow variables. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow us to express the domain decomposition algorithm as a Richardson-type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes.

Original languageEnglish
Pages (from-to)625-656
Number of pages32
JournalInternational Journal for Numerical Methods in Fluids
Issue number6
Early online date24 Oct 2001
Publication statusPublished - 30 Nov 2001


  • domain decomposition method
  • Euler equations
  • finite elements
  • finite volumes
  • multigrid algorithm
  • parallel computing
  • triangular meshes


Dive into the research topics of 'A domain decomposition approach to finite volume solutions of the Euler equations on unstructured triangular meshes'. Together they form a unique fingerprint.

Cite this