A design rule for constant depth microfluidic networks for power-law fluids

Konstantinos Zografos, Robert W. Barber, David R. Emerson, Mónica S. N. Oliveira

Research output: Contribution to journalArticle

7 Citations (Scopus)
152 Downloads (Pure)

Abstract

A biomimetic design rule is proposed for generating bifurcating microfluidic channel networks of rectangular cross section for power-law and Newtonian fluids. The design is based on Murray’s law, which was originally derived using the principle of minimum work for Newtonian fluids to predict the optimum ratio between the diameters of the parent and daughter vessels in networks with circular cross section. The relationship is extended here to consider the flow of power-law fluids in planar geometries (i.e. geometries of rectangular cross section with constant depth) typical of lab-on-a-chip applications. The proposed design offers the ability to precisely control the shear-stress distributions and predict the flow resistance along the bifurcating network. Computational fluid dynamics simulations are performed using an in-house code to assess the validity of the proposed design and the limits of operation in terms of Reynolds number for Newtonian, shear-thinning and shear-thickening fluids under various flow conditions.
Original languageEnglish
Pages (from-to)737-749
Number of pages15
JournalMicrofluidics and Nanofluidics
Volume19
Issue number3
Early online date19 Jun 2015
DOIs
Publication statusPublished - 1 Sep 2015

    Fingerprint

Keywords

  • non-Newtonian fluids
  • power-law fluid
  • shear-thinning and shear thickening fluids
  • Murray's law
  • bifurcating networks
  • biomimetics

Cite this