Projects per year
Abstract
A biomimetic design rule is proposed for generating bifurcating microfluidic channel networks of rectangular cross section for power-law and Newtonian fluids. The design is based on Murray’s law, which was originally derived using the principle of minimum work for Newtonian fluids to predict the optimum ratio between the diameters of the parent and daughter vessels in networks with circular cross section. The relationship is extended here to consider the flow of power-law fluids in planar geometries (i.e. geometries of rectangular cross section with constant depth) typical of lab-on-a-chip applications. The proposed design offers the ability to precisely control the shear-stress distributions and predict the flow resistance along the bifurcating network. Computational fluid dynamics simulations are performed using an in-house code to assess the validity of the proposed design and the limits of operation in terms of Reynolds number for Newtonian, shear-thinning and shear-thickening fluids under various flow conditions.
Original language | English |
---|---|
Pages (from-to) | 737-749 |
Number of pages | 15 |
Journal | Microfluidics and Nanofluidics |
Volume | 19 |
Issue number | 3 |
Early online date | 19 Jun 2015 |
DOIs | |
Publication status | Published - 1 Sept 2015 |
Keywords
- non-Newtonian fluids
- power-law fluid
- shear-thinning and shear thickening fluids
- Murray's law
- bifurcating networks
- biomimetics
Fingerprint
Dive into the research topics of 'A design rule for constant depth microfluidic networks for power-law fluids'. Together they form a unique fingerprint.Profiles
-
Monica Oliveira
- Mechanical And Aerospace Engineering - Senior Lecturer
- Ocean, Air and Space
Person: Academic
Projects
- 1 Finished
-
Microfluidics of Complex Fluids: Extensional Rheology from Optimisation to Experiment
Oliveira, M. (Principal Investigator)
EPSRC (Engineering and Physical Sciences Research Council)
3/02/14 → 8/08/16
Project: Research
Equipment
Research output
- 12 Citations
- 1 Article
-
Customised bifurcating networks for mapping polymer dynamics in shear flows
Fidalgo, J., Zografos, K., Casanellas, L., Lindner, A. & Oliveira, M. S. N., 6 Dec 2017, In: Biomicrofluidics. 11, 6, 12 p., 064106.Research output: Contribution to journal › Article › peer-review
Open AccessFile5 Citations (Scopus)55 Downloads (Pure)