Abstract
The actuator-line method is here integrated with a data-driven approach for the investigation of aircraft-induced trailing vortices as generated by landing and take-off configurations with varying levels of high-lift device deflections. It is shown that through coupling the Actuator-Line-Method to a suitable Reduced-Order-Model built upon spanwise aerodynamic force distributions obtained from high-fidelity CFD solution data. The resulting wake from the geometry can be reproduced in a manner that no longer requires an explicit representation of the aircraft geometry within the simulation environment. The result is a method that allows for increased fidelity in the vortex farfield when studying the relevant wake dynamics and evolution during take-off, climb, approach and landing. The accuracy of the proposed method is assessed via a direct comparison to traditional high-fidelity nearfield derived results where it was observed that the induced downstream velocity profile and resulting location of vortex structures displayed a satisfactory level of agreement. With the creation of such a method, the effects of variations in aircraft high-lift deployment can be included within the simulation of downstream vortex pairs in a manner that respects the computational limitations of current hardware.
Original language | English |
---|---|
Article number | 106578 |
Number of pages | 15 |
Journal | Computers and Fluids |
Volume | 291 |
Early online date | 20 Feb 2025 |
DOIs | |
Publication status | Published - 15 Apr 2025 |
Keywords
- wake vortex
- actuator line method
- aviation sustainability
- computational fluid dynamics