A data analytic approach to automatic fault diagnosis and prognosis for distribution automation

Xiaoyu Wang, Stephen D.J. McArthur, Scott M. Strachan, John D. Kirkwood, Bruce Paisley

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)
229 Downloads (Pure)

Abstract

Distribution Automation (DA) is deployed to reduce outages and to rapidly reconnect customers following network faults. Recent developments in DA equipment have enabled the logging of load and fault event data, referred to as ‘pick-up activity’. This pick-up activity provides a picture of the underlying circuit activity occurring between successive DA operations over a period of time and has the potential to be accessed remotely for off-line or on-line analysis. The application of data analytics and automated analysis of this data supports reactive fault management and post fault investigation into anomalous network behavior. It also supports predictive capabilities that identify when potential network faults are evolving and offers the opportunity to take action in advance in order to mitigate any outages. This paper details the design of a novel decision support system to achieve fault diagnosis and prognosis for DA schemes. It combines detailed data from a specific DA device with rule-based, data mining and clustering techniques to deliver the diagnostic and prognostic functions. These are applied to 11kV distribution network data captured from Pole Mounted Auto-Reclosers (PMARs) as provided by a leading UK network operator. This novel automated analysis system diagnoses the nature of a circuit’s previous fault activity, identifies underlying anomalous circuit activity, and highlights indications of problematic events gradually evolving into a full scale circuit fault. The novel contributions include the tackling of ‘semi-permanent faults’ and the re-usable methodology and approach for applying data analytics to any DA device data sets in order to provide diagnostic decisions and mitigate potential fault scenarios.
Original languageEnglish
Pages (from-to)6265-6273
Number of pages9
JournalIEEE Transactions on Smart Grid
Volume9
Issue number6
Early online date25 May 2017
DOIs
Publication statusPublished - 30 Nov 2018

Keywords

  • distribution automation
  • distribution network data
  • fault diagnosis and prognosis
  • pick-up activity
  • data analytics
  • data visualisation
  • decision support sustems
  • knowledge based system
  • clustering methods

Fingerprint

Dive into the research topics of 'A data analytic approach to automatic fault diagnosis and prognosis for distribution automation'. Together they form a unique fingerprint.

Cite this