TY - JOUR
T1 - A coupling method for identifying arc faults based on short-observation-window SVDR
AU - Jiang, Run
AU - Bao, Guanghai
AU - Hong, Qiteng
AU - Booth, Campbell
N1 - © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2021/3/22
Y1 - 2021/3/22
N2 - This article presents a new method for effective detection of ac series arc fault (AF) (SAF) and extraction of SAF characteristics in residential buildings, which addresses the challenges with conventional current detection methods in discriminating arcing and nonarcing current due to their similarity. Different from the traditional method, in the proposed method, the differential magnetic flux is coupled to obtain high-frequency signals by putting the live line and the neutral line through the current transformer, which can effectively solve the problem of SAF features disappearing in the trunk-line current. However, similar to the traditional method, the effectiveness of the proposed coupling method could also be compromised when being used in cases with dimmer load and load starting process. This is found to be caused by the presence of high-Amplitude pulse phenomenon in the nonarcing signals in these scenarios, which are incorrectly detected as arcing signals in other loads. To address this issue, a short-observation-window singular value decomposition and reconstruction algorithm (SOW-SVDR) is used to enhance the capability to identify SAFs by the coupling method. The proposed method has been implemented and validated according to the UL1699 standard with different types of loads connected to the system and also tested under their starting processes. The experimental results show that the proposed approach is more effective in detecting AFs compared with existing methods.
AB - This article presents a new method for effective detection of ac series arc fault (AF) (SAF) and extraction of SAF characteristics in residential buildings, which addresses the challenges with conventional current detection methods in discriminating arcing and nonarcing current due to their similarity. Different from the traditional method, in the proposed method, the differential magnetic flux is coupled to obtain high-frequency signals by putting the live line and the neutral line through the current transformer, which can effectively solve the problem of SAF features disappearing in the trunk-line current. However, similar to the traditional method, the effectiveness of the proposed coupling method could also be compromised when being used in cases with dimmer load and load starting process. This is found to be caused by the presence of high-Amplitude pulse phenomenon in the nonarcing signals in these scenarios, which are incorrectly detected as arcing signals in other loads. To address this issue, a short-observation-window singular value decomposition and reconstruction algorithm (SOW-SVDR) is used to enhance the capability to identify SAFs by the coupling method. The proposed method has been implemented and validated according to the UL1699 standard with different types of loads connected to the system and also tested under their starting processes. The experimental results show that the proposed approach is more effective in detecting AFs compared with existing methods.
KW - series arc fault
KW - coupling signals
KW - short observation- window singular value decomposition and reconstruction (SOW-SVDR)
KW - UL1699
U2 - 10.1109/TIM.2021.3067660
DO - 10.1109/TIM.2021.3067660
M3 - Article
VL - 70
JO - IEEE Transactions on Instrumentation and Measurement
JF - IEEE Transactions on Instrumentation and Measurement
SN - 0018-9456
M1 - 3513810
ER -