TY - GEN
T1 - A cost-benefit approach for the evaluation of prognostics-updated maintenance strategies in complex dynamic systems
AU - Aizpurua, J. I.
AU - Catterson, V. M.
AU - Chiacchio, F.
AU - D'Urso, D.
N1 - This is an Accepted Manuscript of a book chapter published by CRC Press in Risk, Reliability and Safety: Innovating Theory and Practice: Proceedings of ESREL 2016 (Glasgow, Scotland, 25-29 September 2016) on 13/09/2016, available : https://www.crcpress.com/Risk-Reliability-and-Safety-Innovating-Theory-and-Practice-Proceedings/Walls-Revie-Bedford/p/book/9781138029972
PY - 2016/9/13
Y1 - 2016/9/13
N2 - The implementation of maintenance strategies which integrate online condition data has the potential to increase availability and reduce maintenance costs. Prognostics techniques enable the implementation of these strategies through up-to-date remaining useful life estimations. However, a cost-benefit assessment is necessary to verify the scale of potential benefits of condition-based maintenance strategies and prognostics for a given application. The majority of prognostics applications focus on the evaluation of a specific failure mode of an asset. However, industrial systems are comprised of different assets with multiple failure modes, which in turn, work in cooperation to perform a system level function. Besides, these systems include time-dependent events and conditional triggering events which cause further effects on the system. In this context not only are the system-level prognostics predictions challenging, but also the cost-benefit analysis of condition-based maintenance policies. In this work we combine asset prognostics predictions with temporal logic so as to obtain an up-to-date system level health estimation. We use asset level and system level prognostics estimations to evaluate the cost-effectiveness of alternative maintenance policies. The application of the proposed approach enables the adoption of conscious trade-off decisions between alternative maintenance strategies for complex systems. The benefits of the proposed approach are discussed with a case study from the power industry.
AB - The implementation of maintenance strategies which integrate online condition data has the potential to increase availability and reduce maintenance costs. Prognostics techniques enable the implementation of these strategies through up-to-date remaining useful life estimations. However, a cost-benefit assessment is necessary to verify the scale of potential benefits of condition-based maintenance strategies and prognostics for a given application. The majority of prognostics applications focus on the evaluation of a specific failure mode of an asset. However, industrial systems are comprised of different assets with multiple failure modes, which in turn, work in cooperation to perform a system level function. Besides, these systems include time-dependent events and conditional triggering events which cause further effects on the system. In this context not only are the system-level prognostics predictions challenging, but also the cost-benefit analysis of condition-based maintenance policies. In this work we combine asset prognostics predictions with temporal logic so as to obtain an up-to-date system level health estimation. We use asset level and system level prognostics estimations to evaluate the cost-effectiveness of alternative maintenance policies. The application of the proposed approach enables the adoption of conscious trade-off decisions between alternative maintenance strategies for complex systems. The benefits of the proposed approach are discussed with a case study from the power industry.
KW - prognostics
KW - condition-based maintenance
KW - cost-benefit assessments
KW - reliability-centred maintenance
KW - dynamic dependability
UR - https://www.crcpress.com/Risk-Reliability-and-Safety-Innovating-Theory-and-Practice-Proceedings/Walls-Revie-Bedford/p/book/9781138029972
UR - http://esrel2016.org/
M3 - Conference contribution book
SN - 9781138029972
BT - Risk, Reliability and Safety
A2 - Walls, Lesley
A2 - Revie, Matthe
A2 - Bedford, Tim
ER -