A computationally inspired investigation of the solid forms of (R)-1-phenylethylammonium-(S)-2-phenylbutyrate

Constantinos D Antoniadis, Emiliana D'Oria, Panagiotis G Karamertzanis, Derek A Tocher, Alastair J Florence, Sarah L. Price, Alan G Jones

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Following the computation of a lattice energy landscape which predicted that there should be more stable, denser forms of (R)-1-phenylethylammonium-(S)-2-phenylbutyrate, crystallizations from a range of solvents were performed to search for other polymorphs and investigate the possibility that the known P4(1) structure could be a hydrate. Extensive crystallization experiments from a wide range of solvents gave fine needles or microcrystalline samples. A redetermination of the P4(1) structure by powder X-ray diffraction located all protons, and in conjunction with other experimental and computational evidence showed that the structure was anhydrous. Evidence for two additional forms was found as mixtures with form I. These include an orthorhombic form, possibly a Z' = 3 polymorph, and another as yet unidentified form obtained as a minor component from dichloromethane solution. However, both these forms appear to be metastable with respect to form I (P4(1)), which is therefore probably the most thermodynamically stable form that can be crystallized from solution under ambient conditions. This determination of the solid state behavior of the less readily crystallized member of the diastereomeric salt system (R)-1-phenylethylammonium-(R/S)-2-phenylbutyrate provides a challenge to the theoretical modeling to explain its ideal resolution behavior.
Original languageEnglish
Pages (from-to)447-455
Number of pages9
JournalChirality
Volume22
Issue number4
DOIs
Publication statusPublished - 5 May 2010

Keywords

  • crystallization
  • crystallography, X-ray
  • hydrogen bonding
  • methylene chloride
  • chemical models
  • molecular models
  • theoretical models
  • molecular conformation
  • phenylbutyrates
  • software
  • solvents
  • stereoisomerism
  • water
  • X-ray diffraction

Fingerprint

Dive into the research topics of 'A computationally inspired investigation of the solid forms of (R)-1-phenylethylammonium-(S)-2-phenylbutyrate'. Together they form a unique fingerprint.

Cite this