A characterization of intermediate Weyl coefficients

Matthias Langer, Harald Woracek

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

In connection with an indefinite analogue of canonical systems of differential equations some subclasses of the Nevanlinna class come up. We give a criterion for a function to belong to in terms of its poles and residues
LanguageEnglish
Pages137-155
Number of pages19
JournalMonatshefte für Mathematik
Volume135
Issue number2
DOIs
Publication statusPublished - Mar 2002

Fingerprint

Canonical System
System of Differential Equations
Pole
Analogue
Coefficient
Class

Keywords

  • Weyl coefficient
  • de Branges spaces
  • distribution of poles

Cite this

Langer, Matthias ; Woracek, Harald. / A characterization of intermediate Weyl coefficients. In: Monatshefte für Mathematik. 2002 ; Vol. 135, No. 2. pp. 137-155.
@article{f589d292cf684dcaa44e0632dab78d1f,
title = "A characterization of intermediate Weyl coefficients",
abstract = "In connection with an indefinite analogue of canonical systems of differential equations some subclasses of the Nevanlinna class come up. We give a criterion for a function to belong to in terms of its poles and residues",
keywords = "Weyl coefficient, de Branges spaces, distribution of poles",
author = "Matthias Langer and Harald Woracek",
year = "2002",
month = "3",
doi = "10.1007/s006050200011",
language = "English",
volume = "135",
pages = "137--155",
journal = "Monatshefte f{\"u}r Mathematik",
issn = "0026-9255",
number = "2",

}

A characterization of intermediate Weyl coefficients. / Langer, Matthias; Woracek, Harald.

In: Monatshefte für Mathematik, Vol. 135, No. 2, 03.2002, p. 137-155.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A characterization of intermediate Weyl coefficients

AU - Langer, Matthias

AU - Woracek, Harald

PY - 2002/3

Y1 - 2002/3

N2 - In connection with an indefinite analogue of canonical systems of differential equations some subclasses of the Nevanlinna class come up. We give a criterion for a function to belong to in terms of its poles and residues

AB - In connection with an indefinite analogue of canonical systems of differential equations some subclasses of the Nevanlinna class come up. We give a criterion for a function to belong to in terms of its poles and residues

KW - Weyl coefficient

KW - de Branges spaces

KW - distribution of poles

U2 - 10.1007/s006050200011

DO - 10.1007/s006050200011

M3 - Article

VL - 135

SP - 137

EP - 155

JO - Monatshefte für Mathematik

T2 - Monatshefte für Mathematik

JF - Monatshefte für Mathematik

SN - 0026-9255

IS - 2

ER -