A CFD and experimental study on cavitation in positive displacement pump: benefits and drawbacks of the "full" cavitation model

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

To fill the lack of literature in the numerical study of Positive Displacement (PD) pumps in cavitating condition, a comprehensive and transient Computational Fluid Dynamics (CFD) model of a PD pump, simulating the cavitation arising during the suction stroke, was created. The “full” cavitation model was utilised to study its capability on PD pumps cavitation. A set of three plunger speeds were simulated. Using the highest plunger speed an assessment was made of the effect of 1.5, 3, 4.5 and 15 ppm of air mass fraction on pump performance and cavitation. An experimental test rig, replicating the CFD model, was designed and built in order to validate the numerical model and find its weaknesses. CFD modelled, in a consistent way, the fluid dynamics phenomena related to cavitation (chamber pressure approaching the vapour pressure, the vaporization/condensation and the pressure spike occurrence at the end of the suction stroke marking the end of cavitation). On the other hand the CFD pressure trends calculated appeared stretched along the time axis with respect to the experimental data and this highlighted issues in the multiphase and cavitation models: the vaporization/condensation rate calculated by CFD did not follow the real dynamics correctly because the non-condensable gas expansion was overestimated. This was seen when comparing the CFD/experiments where the simulated pressure drop gradient, at the beginning of the suction stroke and the pressure peaks as the valve closed, exhibited a delay in their occurrence. The simulation results were sensitive to the dissolved air mass fraction as the delay depended on the amount of air dissolved in the water. Although the influence of the air mass fraction was considered consistent, the 3 ppm CFD case was the closest to the experiment results whereas the analyst expected the 15 ppm case to be more accurate.
LanguageEnglish
Pages57-71
Number of pages15
JournalEngineering Applications of Computational Fluid Mechanics
Volume10
Issue number1
DOIs
Publication statusPublished - 24 Nov 2015

Fingerprint

Cavitation
Computational Fluid Dynamics
Pump
Experimental Study
Computational fluid dynamics
Pumps
Suction
Stroke
Fluid Model
Air
Condensation
Vaporization
Dynamic models
Dynamic Model
Model
Pressure Drop
Fluid Dynamics
Fluid dynamics
Vapor pressure
Spike

Keywords

  • positive displacement pumps
  • computational fluid dynamics (CFD)
  • cavitation model
  • air mass fraction

Cite this

@article{5db8353f799e45118423319c567c638f,
title = "A CFD and experimental study on cavitation in positive displacement pump: benefits and drawbacks of the {"}full{"} cavitation model",
abstract = "To fill the lack of literature in the numerical study of Positive Displacement (PD) pumps in cavitating condition, a comprehensive and transient Computational Fluid Dynamics (CFD) model of a PD pump, simulating the cavitation arising during the suction stroke, was created. The “full” cavitation model was utilised to study its capability on PD pumps cavitation. A set of three plunger speeds were simulated. Using the highest plunger speed an assessment was made of the effect of 1.5, 3, 4.5 and 15 ppm of air mass fraction on pump performance and cavitation. An experimental test rig, replicating the CFD model, was designed and built in order to validate the numerical model and find its weaknesses. CFD modelled, in a consistent way, the fluid dynamics phenomena related to cavitation (chamber pressure approaching the vapour pressure, the vaporization/condensation and the pressure spike occurrence at the end of the suction stroke marking the end of cavitation). On the other hand the CFD pressure trends calculated appeared stretched along the time axis with respect to the experimental data and this highlighted issues in the multiphase and cavitation models: the vaporization/condensation rate calculated by CFD did not follow the real dynamics correctly because the non-condensable gas expansion was overestimated. This was seen when comparing the CFD/experiments where the simulated pressure drop gradient, at the beginning of the suction stroke and the pressure peaks as the valve closed, exhibited a delay in their occurrence. The simulation results were sensitive to the dissolved air mass fraction as the delay depended on the amount of air dissolved in the water. Although the influence of the air mass fraction was considered consistent, the 3 ppm CFD case was the closest to the experiment results whereas the analyst expected the 15 ppm case to be more accurate.",
keywords = "positive displacement pumps, computational fluid dynamics (CFD), cavitation model, air mass fraction",
author = "Aldo Iannetti and Matthew Stickland and William Dempster",
year = "2015",
month = "11",
day = "24",
doi = "10.1080/19942060.2015.1110535",
language = "English",
volume = "10",
pages = "57--71",
journal = "Engineering Applications of Computational Fluid Mechanics",
issn = "1994-2060",
publisher = "Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University",
number = "1",

}

TY - JOUR

T1 - A CFD and experimental study on cavitation in positive displacement pump

T2 - Engineering Applications of Computational Fluid Mechanics

AU - Iannetti, Aldo

AU - Stickland, Matthew

AU - Dempster, William

PY - 2015/11/24

Y1 - 2015/11/24

N2 - To fill the lack of literature in the numerical study of Positive Displacement (PD) pumps in cavitating condition, a comprehensive and transient Computational Fluid Dynamics (CFD) model of a PD pump, simulating the cavitation arising during the suction stroke, was created. The “full” cavitation model was utilised to study its capability on PD pumps cavitation. A set of three plunger speeds were simulated. Using the highest plunger speed an assessment was made of the effect of 1.5, 3, 4.5 and 15 ppm of air mass fraction on pump performance and cavitation. An experimental test rig, replicating the CFD model, was designed and built in order to validate the numerical model and find its weaknesses. CFD modelled, in a consistent way, the fluid dynamics phenomena related to cavitation (chamber pressure approaching the vapour pressure, the vaporization/condensation and the pressure spike occurrence at the end of the suction stroke marking the end of cavitation). On the other hand the CFD pressure trends calculated appeared stretched along the time axis with respect to the experimental data and this highlighted issues in the multiphase and cavitation models: the vaporization/condensation rate calculated by CFD did not follow the real dynamics correctly because the non-condensable gas expansion was overestimated. This was seen when comparing the CFD/experiments where the simulated pressure drop gradient, at the beginning of the suction stroke and the pressure peaks as the valve closed, exhibited a delay in their occurrence. The simulation results were sensitive to the dissolved air mass fraction as the delay depended on the amount of air dissolved in the water. Although the influence of the air mass fraction was considered consistent, the 3 ppm CFD case was the closest to the experiment results whereas the analyst expected the 15 ppm case to be more accurate.

AB - To fill the lack of literature in the numerical study of Positive Displacement (PD) pumps in cavitating condition, a comprehensive and transient Computational Fluid Dynamics (CFD) model of a PD pump, simulating the cavitation arising during the suction stroke, was created. The “full” cavitation model was utilised to study its capability on PD pumps cavitation. A set of three plunger speeds were simulated. Using the highest plunger speed an assessment was made of the effect of 1.5, 3, 4.5 and 15 ppm of air mass fraction on pump performance and cavitation. An experimental test rig, replicating the CFD model, was designed and built in order to validate the numerical model and find its weaknesses. CFD modelled, in a consistent way, the fluid dynamics phenomena related to cavitation (chamber pressure approaching the vapour pressure, the vaporization/condensation and the pressure spike occurrence at the end of the suction stroke marking the end of cavitation). On the other hand the CFD pressure trends calculated appeared stretched along the time axis with respect to the experimental data and this highlighted issues in the multiphase and cavitation models: the vaporization/condensation rate calculated by CFD did not follow the real dynamics correctly because the non-condensable gas expansion was overestimated. This was seen when comparing the CFD/experiments where the simulated pressure drop gradient, at the beginning of the suction stroke and the pressure peaks as the valve closed, exhibited a delay in their occurrence. The simulation results were sensitive to the dissolved air mass fraction as the delay depended on the amount of air dissolved in the water. Although the influence of the air mass fraction was considered consistent, the 3 ppm CFD case was the closest to the experiment results whereas the analyst expected the 15 ppm case to be more accurate.

KW - positive displacement pumps

KW - computational fluid dynamics (CFD)

KW - cavitation model

KW - air mass fraction

UR - http://www.tandfonline.com/loi/tcfm20

U2 - 10.1080/19942060.2015.1110535

DO - 10.1080/19942060.2015.1110535

M3 - Article

VL - 10

SP - 57

EP - 71

JO - Engineering Applications of Computational Fluid Mechanics

JF - Engineering Applications of Computational Fluid Mechanics

SN - 1994-2060

IS - 1

ER -