2D generalized optical spatial modulation for MIMO-OWC systems

Chen Chen, Lin Zeng, Xin Zhong, Shu Fu, Zhihong Zeng, Min Liu, Harald Haas

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
18 Downloads (Pure)

Abstract

In this paper, a novel two-dimensional (2D) generalized optical spatial modulation (GOSM) scheme is proposed for multiple-input multiple-output optical wireless communication (MIMO-OWC) systems. By grouping multiple successive time slots as one time block, 2D GOSM mapping can be performed not only in the space domain but also in the time domain. Specifically, two types of 2D GOSM mapping schemes are designed, including 2D-1 and 2D-2 GOSM mappings. Moreover, to address the high complexity issue of optimal joint maximum-likelihood (ML) detection and the noise amplification and error propagation issues of zero-forcing-based ML (ZF-ML) detection, a deep neural network (DNN)-aided detection scheme is further designed for 2D GOSM systems. Simulation results demonstrate the superiority of the proposed 2D GOSM scheme with deep learning-aided detection for high-speed and low-complexity MIMO-OWC systems. More specifically, a remarkable 3.4-dB signal-to-noise ratio (SNR) gain can be achieved by 2D GOSM in comparison to the conventional one-dimensional (1D) GOSM, when applying the DNN-aided detection.
Original languageEnglish
Article number7343606
Pages (from-to)1-6
Number of pages6
JournalIEEE Photonics Journal
Volume14
Issue number4
DOIs
Publication statusPublished - 21 Jul 2022

Keywords

  • deep learning
  • multiple-input multiple-output (MIMO)
  • optical wireless communication
  • light emitting diodes
  • symbols
  • modulation
  • optical transmitters
  • optical modulation
  • adaptive optics
  • high-speed optical techniques

Fingerprint

Dive into the research topics of '2D generalized optical spatial modulation for MIMO-OWC systems'. Together they form a unique fingerprint.

Cite this