micromanipulation non-invasively in nanomaterial manufacture processes, to enhance direct control of nucleation, growth and structure development. Nucleation and assembly are the first stage of engineering nanostructured materials in applications including drug crystallisation, nanoparticle and nanoporous catalyst manufacture, and metal-organic frameworks for molecular storage. There is significant evidence that these complex microscale nucleation and assembly processes are strongly affected by local conditions such as flow. Our understanding of how flow and local (at the micron-scale) forces affect and thus could be used to control nanostructure nucleation is limited, because nucleation is inherently a local process while flow and external forces are usually applied globally. Therefore our novel, versatile OMNIFlow experimental platform will non-invasively impose local micron-scale flows by manipulating optically and magnetically trapped particles, generating local flow fields in the nucleating or assembling suspension. The project brings together Strathclyde expertise in microfluidics, optical and magnetic manipulation and quantitative dynamic microscopy, and focusses on applications in the key Strathclyde research strength of advanced nanomaterial engineering and science for innovative industrial applications. It will provide a unique experimental platform to highlight Strathclyde’s developing central role in this area.