HiDEF. Supergen 3 HDPS Renewal Core and Pluses

Project: Research

Project Details


The HiDEF consortium will explore highly decentralised energy futures. At the core of this is a sustainable electricity supply system that makes optimum use of decentralised assets and in which energy consumers participate actively in appropriately structured decentralised markets. This major change from the present arrangement, where most consumers are passive users of externally supplied energy services, will require new attitudes to energy and new ways working. The technical, market and social aspects of this transformation will be addressed in detail by the multi-disciplinary consortium that has been formed to embrace power system engineers, experts in electricity markets and researchers aware of the social and perceptual challenges. The technical developments that underpin the changes outlined above are the development of new high efficiency micro-CHP units (including the latest high temperature solid oxide fuel cells), the development of ever cheaper PV and micro-wind systems and the role out of smart electricity meters that will facilitate the involvement of even domestic consumers in demand side management. As time varying renewable sources become increasing prevalent in electricity supply, both in the form of small decentralised generators, and in the form of major offshore wind farms, tidal and wave energy installations, the role of highly decentralised load management will become ever more important. In addition the power electronic interfaces of decentralised generators can be used to provide more than just power - with suitable control other important network services like local voltage control, and even system frequency control, can be contributed. The consortium builds on the important work undertaken by the Highly Distributed Power Systems (HDPS) project that established base line models for the new technologies, developed suitable scenarios, and developed the cell concept of delivery.

Key findings

The HiDEF project's stated aim is to design the "future power system that delivers sustainability and security through the widespread deployment of distributed energy resources and thus contributes to national and international ambition for a low carbon future." New research tools and extensive computational results have been provided to assist the industry and also other academic researchers take forward this technology.
Effective start/end date1/07/0930/09/13


  • EPSRC (Engineering and Physical Sciences Research Council): £4,254,178.00

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy
  • SDG 8 - Decent Work and Economic Growth
  • SDG 11 - Sustainable Cities and Communities
  • SDG 12 - Responsible Consumption and Production
  • SDG 13 - Climate Action
  • SDG 15 - Life on Land


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.