Climate change impact assessment on ocean wave energy and coastal hazards and reducing the uncertainties in pursuit of sustainable development

Project: Projects from Previous Employment

Project Details

Description

Renewable energy resources are proper alternatives to mitigate the negative effects of fossil fuels on global warming and climate change. Marine renewable energies are massive resources to provide parts of the energy demand in areas adjacent to open water bodies. Among them, waves have the highest density and lowest visual and environmental impacts, however, the available resources are strongly affected by climate change, which alters the wind magnitude and pattern and consequently, the wave climate. In addition, development from full-scale testing to the commercialization of wave energy farms has been relatively slow, partly due to the financial risks connected to uncertainties in quantifying the wave energy resources. Moreover, installment of wave energy converters (WECs) will impact the sea state and coastal morphology in the areas where the wave energy exploitation is planned. Therefore, my research is focused on assessing the climate change impacts on wave energy resources and extreme events to ensure a reliable supply of energy and efficient use of it, as well as reducing the uncertainties in coastal hazards and investigating the combined impact of climate change and installment of WECs on sea state and coastal morphology to reduce the uncertainties in planning for a future sustainable development.
StatusFinished
Effective start/end date1/10/1830/11/22

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy
  • SDG 13 - Climate Action

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.