A Feasibility Study for Establishing a Design Tool for Floating Tidal Energy System

Project: Research

Project Details


"In the past decade, tidal stream energy converters have become a major focus for renewable energy with a number of turbine farms now in its planning and development phase. The majority of existing designs for tidal energy devices utilize sea-bed mounted turbine energy converters. These underwater devices however present many challenges related to economic and technical viability in terms of their installations and maintenances cost.

In recent years, a floating type tidal energy device is being developed. The installation of such a device comprises of single or multiple turbines mounted on a floating platform anchored to the sea-bed with mooring lines.

Research and industry teams in China and UK have presented multiple demonstrations both on a model scale and a full scale floating tidal energy converter. All of the results add credibility to their technical feasibility and cost effective nature as compared to fixed turbines.

Despite the advantages of floating tidal current turbines (FTCT) over their fixed counterparts, the existing design guidance is not deemed to be ready for the commercial market. The key challenges include guaranteeing the safety of supporting platform and floating mooring lines, the survivability of large scale rotor under extreme sea conditions, the accurate assessment for the proper site selection and the reliable evaluation of environmental impacts. Existing industry design tools rely very much on the simplified models or individual component design rules which negatively impact the energy extraction process/amount/supply.

The proposed project aims to integrate the work already carried out at University of Strathclyde in UK in the field of offshore renewable energy and floating offshore structure with the work performed at (a) Harbin Engineering University in China in the area of floating tidal turbine and (b) Ocean University of China in China in the field of tidal resources and environment impacts assessment. The main goal of the proposed research is to explore whether an integrated method is feasible to better understand the fundamental physics associated with a coupled floating tidal energy system through numerical framework with experimental comparisons and validations. This would then potentially provide more accurate industry design guidelines for the future commercialized FTCTs and other floating marine energy devices."

Key findings

Via this project, a primary study on floating vertical axis turbine is carried out, which forms a foundation for future exploration of relevant floating offshore renewable energy devices.
Effective start/end date30/10/1431/10/15


  • EPSRC (Engineering and Physical Sciences Research Council): £115,854.00


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.