If you made any changes in Pure these will be visible here soon.

Personal profile

Personal Statement

My research is concerned with the structural and permeability architecture of faults. Understanding 3D fault structure is key to answering many questions concerning the evolution of fault zone structures and the migration of fluids through the Earth's crust. My research focuses on four main areas

1) How do faults act as high permeability conduits? Will this type of fault allow potentially undesirable fluids, for example contaminated water or CO2, to escape from geological storage sites? Many “leaky” CO2 reservoirs are controlled by faults, and faults are responsible for controlling the formation of some ore bodies [PhD students: Megan Heather-Cooley, Nilay Gulyuz, Stewart Beattie, Ali McCay (2014), Neil Burnside (2010), Heather Moir (2010), Ben Dockrill (2006), Jonny Willson (2006). Post-docs: Yannick Kremer, Stuart Gilfillan, Jamie Kirkpatrick, Aisling Soden, Jen Roberts]

2) Low permeability faults often produce hydrocarbon traps or barriers to fluid flow.What controls the distribution of structural elements in the faults, and how does each structural element contribute to overall fault zone permeability? Is there any scaling of fault elements that would allow us to predict fault zone properties in the subsurface? [PhD students: Silvia Sosio de Rosa, Yannick Kremer (2014), Rachael Ellen (2013), Aisling Soden (2008), Aileen Bright (2006)]

3) Earthquakes are the tangible evidence of relative movements across fault zones.The processes of earthquake rupture propagation are critically dependent on fault structure and geometry. These processes can also potentially be controlled by changing fluid pressure on fault surfaces. Can we understand these processes by looking at faults exhumed from the depths where earthquakes are known to have nucleated? [PhD students: Brigitte Vogt, Jamie Kirkpatrick (2008), Susan Lawther (2011)]

4) How can we constrain uncertainty in geological models? Measurements of petrophysical fault properties can be incorporated into models of bulk fault properties, but how can we optimise data collection to capture variability? How much does our previous experience influence the way we interpret data? [PhD student Euan Macrae (2013), Post-docs: Clare Bond, Jen Roberts].

Each of these problems can be addressed by detailed characterization of fault zone structures and their permeability and physical properties. My research has a strong multidisciplinary approach and includes collaborations with geologists, civil and environmental engineers and statisticians.

 

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy
  • SDG 9 - Industry, Innovation, and Infrastructure
  • SDG 11 - Sustainable Cities and Communities
  • SDG 12 - Responsible Consumption and Production
  • SDG 13 - Climate Action

Education/Academic qualification

Doctor of Philosophy, Displacement gradients at fault tips- the Chimney Rock fault array, Utah., University of Edinburgh

Award Date: 1 Jan 1999

Bachelor of Science, University of Leeds

Award Date: 1 Jan 1994

Fingerprint

Dive into the research topics where Zoe Shipton is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Network

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or