Stuart Hannah


  • United Kingdom

If you made any changes in Pure these will be visible here soon.

Personal profile

Personal Statement

My research is interested in the development of diagnostic tests for a range of important conditions such as antimicrobial resistance, cancerous biomarkers, infectious diseases within livestock farming, and detection of clinically important molecules including dopamine and ascorbic acid. I develop novel, low-cost electrode systems, suitable for use at the point of care. These systems typically exploit electrochemical techniques for the rapid detection of either biomarkers, specific molecules or bacterial growth.

Current projects I am involved with include development of a rapid, antibiotic susceptibility test, a low-cost sensor for the detection of clinically important neurotransmitter dopamine, optimisation of a process for detection of infectious diseases within the agricultural sector.

I have experience in the supervision of final year undergraduate students and postgraduate level students.

I joined the department of Biomedical Engineering at Strathclyde in 2018 having previously studied for both my undergraduate degree and PhD degree in Electronic and Electrical Engineering at Strathclyde. My PhD involved the development of force and temperature sensors based on organic field-effect transistors and ferroelectric materials. During my PhD, I optimised the transistor dielectric layer to provide transistors with low-voltage operation, and transferred a fully vacuum evaporated transistor fabrication process onto flexible plastic foils. I also developed force/temperature sensors using ferroelectric material P(VDF-TrFE), and incorporated these sensors with organic transistors to provide signal amplification and a useful readout signal for applications ranging from touch screen interfaces to electronic skin. Following my PhD, I worked as a postdoctoral researcher at Ecole des Mines de Saint-Etienne, Gardanne, France for 14 months working on stretchable electronics for biosensing applications. During this time, I developed a conformable, stretchable sensor to record bladder wall stretch to aid treatment of conditions such as urinary urge incontinence and overactive bladder syndrome.

My work is highly interdisciplinary involving industrial partners, clinicians, and working alongside other academics such as microbiologists, chemists and electronics engineers.  

Teaching Interests

In terms of teaching, I contribute to the following undergraduate and masters courses in the department of Biomedical Engineering –

BE428 – Professional Studies and Research Methods in Biomedical Engineering

BE207 – Human Cell Biology 2


Dive into the research topics where Stuart Hannah is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 7 Similar Profiles


Recent external collaboration on country level. Dive into details by clicking on the dots or
If you made any changes in Pure these will be visible here soon.