Projects per year
Personal profile
Personal Statement
Mission
The goal of our research team is to understand (1) how brain state is organized at the level of neural circuits, (2) how brain state affects brain functions, (3) how brain state is regulated, and (4) whether and how manipulation of brain state can modify disease pathology.
Strategy
Out strategies are (1) to study normal information processing, (2) to study abnormal information processing, and (3) to develop tools to modulate brain functions. Our main techniques are in vivo ensemble recording, Ca2+ imaging, optogenetics, and behavioural approaches.
Research Interests
Research Projects
1. State-dependent auditory processing and perception
When we are paying attention to sound, we can vividly perceive it. When sleep, however, our perception is siginificantly diminished. But what is happening in the brain? Because our brain activity ('brain state') continuously changes, it is extremely important to address the following three questions: 1) how is each brain state organized at the level of neural circuit? 2) how do brain states affect sensory processing and perceptual decision? and 3) how are brain states regulated? We are addressing these questions by taking multidisciplinary approaches, with a focus on dynamic interplays between the auditory system and neuromodulatory systems.
2. The circuit mechanism of abnormal hearing
Brain circuits often generate auditory perception even in the absence of auditory inputs, such as auditory hallucinations. But how? We are particularly focusing on phantom auditory perception, so-called tinnitus. Tinnitus is a symptom, which is often associated with hearing loss. Considering aging society and age-related hearing loss, a better understanding of the neural basis of tinnitus is extremly urgent. We are aiming to identify neural correlates of tinnitus at the level of neuronal circuits. By using a massively parallel extracellular recording technique and a behavioural approach, we are determining relationships between tinnitus and abnormal neural population activity in the auditory thalamocortical circuit. This research program will provide further insight into the development of new treatment for tinnitus sufferers.
3. Technology development to improve and restore hearing
Once we understand both normal and abnormal states, a next step is to explore strategies to restore abnormal states into the normal one. In addition, we can also think of how we can boost our normal brain functions. To achieve these goals, we are developing new approaches and technologies. We are particularly interested in the improvement and restoration of sensory abilities by controlling neural activity. Combining advanced technologies in rodents as a model, we are developing novel strategies to improve and restore hearing.
***Our research team is currently accepting applications from prospective PhD students and postdocs. In particular, persons who have strong background in physics, mathematics, or engineering are strongly encouraged to apply. ***
Expertise related to UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):
Fingerprint
- 1 Similar Profiles
Collaborations and top research areas from the last five years
-
Fraunhofer UK Research Limited: Studentship Agreement | Vladimirova, Vanesa
Mathieson, K. (Principal Investigator), Sakata, S. (Co-investigator) & Vladimirova, V. (Research Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/10/24 → 1/04/28
Project: Research Studentship - Internally Allocated
-
Dysregulaton of Microglial Calcium Dynamics by Amyloid Pathology and Sleep Disruption
Sakata, S. (Principal Investigator)
Alzheimer's Research UK (ARUK)
1/03/24 → 31/08/25
Project: Research
-
Site‐specific inhibition of the thalamic reticular nucleus induces distinct modulations in sleep architecture
Visocky, V., Morris , B. J., Dunlop, J., Brandon, N., Sakata, S. & Pratt, J. A., 29 Feb 2024, In: European Journal of Neuroscience. 59, 4, p. 554-569 16 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile2 Citations (Scopus)40 Downloads (Pure) -
SaLSa: a combinatory approach of semi-automatic labeling and long short-term memory to classify behavioral syllables
Sakata, S., 1 Dec 2023, In: eNeuro. 10, 12, p. 1-10 10 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile27 Downloads (Pure)
Datasets
-
Data for: “Pathway-dependent regulation of sleep dynamics in a network model of the sleep-wake cycle”
Sakata, S. (Creator), University of Strathclyde, 11 Dec 2019
DOI: 10.15129/f3fe4727-a05e-469e-b762-6b2c8a9b5b5f, https://github.com/Sakata-Lab/sleep-model
Dataset
-
Data underpinning: "Learned deconvolution using physics priors for structured light-sheet microscopy"
Wijesinghe, P. (Creator), Corsetti, S. (Creator), Chow, D. J. X. (Creator), Sakata, S. (Creator), Dunning, K. R. (Creator) & Dholakia, K. (Creator), University of St Andrews, 7 Mar 2023
DOI: 10.17630/bf92bc18-0b81-41f7-bd44-d74040af7cf0, https://github.com/philipwijesinghe/learned-deconvolution
Dataset
Prizes
Activities
-
Brain-wide neural and astrocytic ensembles across sleep-wake cycles
Sakata, S. (Speaker)
25 Aug 2023Activity: Talk or presentation types › Invited talk
-
Pontine waves across sleep states
Sakata, S. (Speaker)
12 May 2023Activity: Talk or presentation types › Invited talk
Equipment
-
-
MOTORIZED STEREOTOXIC MICROMANIPULATOR
Strathclyde Institute Of Pharmacy And Biomedical SciencesFacility/equipment: Equipment