• United Kingdom

Accepting PhD Students

Personal profile

Personal Statement

Currently the Mulvey group is developing the special synergistic chemistry that can be created through combining distinct components (mixtures of different metals and different ligands) within the same molecular environment.  Fundamentally it could be said that mixing two distinct metal compounds, for example a lithium amide and a magnesium bisalkyl, produces a heterometallic molecule which acts neither as a lithium nor a magnesium compound but a compound of a unique new metallic element!  Novel chemistry, beyond the scope of conventional homometallic reagents, is the reward. This idea has been applied to metallation chemistry.  Metallation (transforming inert C-H bonds to reactive, useful C-Metal bonds) is one of the most important bond-making tools in chemistry, used routinely in synthetic laboratories worldwide, and increasingly employed from milligram to ton scales in fine chemical and pharmaceutical manufacture.  In alkali-metal-mediated metallation the alkali metal is the catalyst while the formally less reactive metal (for example, magnesium or zinc) executes the deprotonation (low polarity metallation).  Major challenges are to turn stoichiometric metallation reactions into catalytic processes and to invent ways of achieving unusual regioselectivities across a broad range of substrates.

For full free access to the latest paper on his synergistic mixed-metal research done in collaboration with Dr O’Hara and published in the journal Science (on14 November 2014, Issue 6211, Vol. 346, Pages 834-837) please use the links below.

Abstract: http://www.sciencemag.org/cgi/content/abstract/346/6211/834?ijkey=kaWzHVOzgowEk&keytype=ref&siteid=sci

Reprint: http://www.sciencemag.org/cgi/rapidpdf/346/6211/834?ijkey=kaWzHVOzgowEk&keytype=ref&siteid=sci

Full Text: http://www.sciencemag.org/cgi/content/full/346/6211/834?ijkey=kaWzHVOzgowEk&keytype=ref&siteid=sci



Robert Emmet Mulvey was born in Glasgow, Scotland in 1959.  He received his first degree (BSc. in Chemistry with 1st class Honours) and his Ph.D. (in organolithium chemistry under the direction of Dr Ron Snaith) at the University of Strathclyde in 1981 and 1984 respectively.  Following two years as a postdoctoral fellow at the University of Durham (in the group of Professor Ken Wade), he returned to Strathclyde in 1986 and was promoted to a Professorship in 1995.  To date he has published over 250 research papers and several book chapters.  Exceeding £3M in total as PI, his career research income includes over £2.1M from EPSRC.  A Fellow of the Royal Society of Edinburgh (FRSE), his research on polar organometallic chemistry has won him several awards and prizes as detailed below.  Most recently his work was honoured by the GDCh Arfvedson Schlenk Prize for 2013, awarded for “outstanding achievements in discovering synergistic effects of mixed main group metal compositions”.  Previously on the international advisory board of the ACS journal Organometallics, he joined the editorial board of Chemistry – A European Journal in 2014.

Research Interests

Career History

2011   Appointed to the 1919 Chair of Inorganic Chemistry, University of Strathclyde.

1995   Professor and Head of Inorganic Chemistry, University of Strathclyde.

1993   Senior Lecturer in Chemistry, University of Strathclyde.

1991   Lecturer in Chemistry, University of Strathclyde.

1986   Royal Society 1983 University Research Fellow, University of          Strathclyde.

1984   Senior Research Assistant in Chemistry, University of Durham.


Awards and Fellowships

2013     Gesellschaft Deutscher Chemiker Arfvedson Schlenk Prize (2013): Awarded for “outstanding achievements in discovering synergistic effects of mixed main group metal compositions”.

2009-2014 Royal Society Wolfson Research Merit Award: Awarded for the study of “synergic mixed-metal chemistry: metallation and inverse crown applications”.

2004   Royal Society Leverhulme Trust Senior Research Fellowship: Awarded by the Royal Society for the study of “molecular synergy and inverse crown ring chemistry”.

2002   RSC Main Group Element Award: Given by the Royal Society of Chemistry for “elegant contributions to the metallo-organic and cluster chemistry of the alkali and alkaline earth metals”.

2001   Fellow of the Royal Society of Edinburgh: Elected to the Fellowship of the Royal Society of Edinburgh (FRSE).

1988   RSC Meldola Medal: Given by the Society of Maccabaeans and the Royal Society of Chemistry in respect of work on the synthesis and characterisation of the unprecedented species of lithium oligomer chemistry.

1986   Royal Society 1983 University Research Fellowship: Host institution, University of Strathclyde.  Title of research project “Explorative coordination chemistries of Cu(I)/Zn(II) versus the alkaline/alkaline-earth metals”.

1984   The Ritchie Prize (1984): Given on the recommendation of the Chairman of the Department of Pure and Applied Chemistry, University of Strathclyde, to the PhD candidate “who presents the thesis which best combines excellence of scientific work with quality of presentation”.

Academic / Professional qualifications

Selected Top Publications

1.  “Synergic sedation of sensitive anions: alkali-mediated zincation of cyclic ethers and ethene”: A. R. Kennedy, J. Klett, R. E. Mulvey, D. S. Wright, Science, 2009, 326, 706.  (This paper demonstrated that zinc reagents generally regarded to be poor bases can exhibit greatly enhanced deprotonating abilities when combined with sodium or potassium and that the sensitive ether or vinyl anions generated by such Zn-H exchanges can be stabilized through co-operative bimetallic bonding).

2.  "Cleave and capture chemistry illustrated through bimetallic-induced fragmentation of tetrahydrofuran”: R. E. Mulvey, V. L. Blair, W. Clegg, A. R. Kennedy, J. Klett, L. Russo,  Nature Chemistry, 2010, 2, 588.  (Opposite to the “sedation” story in the Science paper, switching to a different bimetallic reagent leads to a catastrophic cleavage of THF, breaking 6 of its 13 bonds. All fragments are captured in novel crystalline bimetallic products).

3.  “Regioselective tetrametalation of ferrocene in a single reaction: Extension of s-block inverse crown chemistry to the d-block” : W. Clegg, K. W. Henderson, A. R. Kennedy, R. E. Mulvey, C. T. O'Hara, R. B. Rowlings, D. M. Tooke,  Angew. Chem. Int. Ed. 2001, 40, 3902–390.  (Previously no known organomagnesium reagent could deprotonate a metallocene, but here using a synergic sodium-magnesiate reagent, ferrocene could be deprotonated not once but four times.  The outcome of this remarkable regioselective tetramagnesiation was a new 16-membered inverse crown ring structure).

4.  "Directed meta-metalation using alkali-metal-mediated zincation”: D. R. Armstrong, W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W. Honeyman, R. E. Mulvey, Angew. Chem. Int. Ed. 2006, 45, 3775.  (Metallation of substituted aromatic compounds usually occurs at the ortho position.  Breaking this rule, this study reveals that deprotonation of anilines can be redirected to a meta site using a bimetallic reagent).

5.  “Avante-garde metalating agents: structural basis of alkali-metal-mediated metalation”, R. E. Mulvey, Accounts of Chemical Research 2009, 42, 743. This perspective article summarises the achievements of the Mulvey group in synergic bimetallic chemistry over the past few years.

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy


Dive into the research topics where Robert Mulvey is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or