• United Kingdom

Accepting PhD Students

PhD projects

- Computational design of bio-inspired silica materials for carbon capture (https://bit.ly/32q8Pc6) - Predicting drug solubility in different solvents using molecular simulation and machine learning (https://bit.ly/2v5Zz0V)

20022022

Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Personal Statement

Miguel Jorge was born in Ovar, Portugal. In 1998 he completed his Degree in Chemical Engineering at the University of Porto, followed by a PhD in Chemical Engineering at the University of Edinburgh in 2003. He has since held full time researcher positions at the University of Massachusetts (USA) and at the University of Porto (Faculty of Sciences and Faculty of Engineering). He is a Lecturer at the University of Strathclyde since January 2013.

Miguel’s research applies molecular modelling techniques, such as Monte Carlo and Molecular Dynamics, to understand systems that are important in chemical engineering applications, with the long-term goal of turning molecular simulation into a widely used industrial tool. His research spans areas as diverse as adsorption, material synthesis and characterisation, thermodynamics and phase equilibrium, physics of interfaces and nanotechnology. He has published over 50 articles in international scientific journals and delivered over 20 invited seminars and conference presentations. He is also strongly interested in research policy, having been a founding member and former President of the Portuguese National Association of Science and Technology Researchers (ANICT). He is currently one of the Directors of the International Consortium of Research Staff Associations (ICoRSA) and is involved in the Voice of Researchers (VoR) initiative.

Research Interests

Understanding phenomena at the molecular level is progressively gaining importance in Chemical Engineering, not only at the fundamental level, but also in the context of property predictions and material/process design. Our research group applies molecular modelling techniques, such as Monte Carlo and Molecular Dynamics, to understand systems that are important in chemical engineering applications, with the long-term goal of turning molecular simulation into a widely used industrial tool.

Specific topics under study include:

i) computational design of new nanoporous materials for adsorptive separations, using a multiscale approach from the quantum to the mesoscale level, and based on detailed knowledge of the relationships between synthesis conditions, material properties and performance;

ii) developing new models for adsorption in nanoporous materials, including crystalline materials (e.g., zeolites), amorphous materials (e.g., activated carbons) and hybrid organic-inorganic materials (e.g., metal-organic frameworks or mesoporous organosilicas);

iii) understanding how molecules self-assemble in solution to yield supra-molecular aggregates like micelles and liquid crystals;

iv) gaining an in-depth understanding of interfaces between two fluids (gas-liquid or liquid-liquid), with particular application to ionic liquids;

v) developing new methods and molecular models for calculating the solubility of complex molecules, including pharmaceuticals and pollutants.

Accepting PhD Student Applications in the following topics:

- Computational design of bio-inspired silica materials for carbon capture

Predicting drug solubility in different solvents using molecular simulation and machine learning

Teaching Interests

I currently teach the following courses in the Chemical Engineering BEng/MEng:

- Thermodynamics (second year)

- Molecular Simulation in Chemical Engineering (fifth year)

- Chemical Engineering Design (fourth year)

- Chemical Engineering Project (fifth year)

I have received the following awards for my teaching activities:

- Winner of Best Teacher in Faculty – Engineering, Strathclyde Teaching Excellence Awards, 2015.

- Nominated for Teaching Excellence Award at the University of Strathclyde (“Most Enthusiastic” and “Most Supportive” categories), 2014.

- Nominated for Teaching Excellence Award at the University of Strathclyde (“Most Enthusiastic” and “Most Supportive” categories), 2013.

Industrial Relevance

Molecular simulation methods are playing an increasing role in industrial applications, partly due to massive advances in computer power, but also to methodological developments. Molecular simulation methods are now becoming competitive with more traditional macroscopic approaches (e.g., equations of state or quantitative structure-property relationships) in prediction of fluid properties. My research aims to increase the suitability of molecular simulation as a tool with industrial relevance, particularly in the areas of solubility prediction, adsorption prediction, design of new solvents, and design of new porous materials.

Expertise & Capabilities

- Molecular Simulation

- Thermodynamics

- Statistical Mechanics

- Interfacial processes

- Adsorption

- Porous Materials

- Computational Modelling

Education/Academic qualification

Doctor of Philosophy, University of Edinburgh

Master of Engineering, Universidade do Porto

Fingerprint Dive into the research topics where Miguel Jorge is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 3 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects

  • Screening Metal-Organic Frameworks for Natural Gas Upgrading Using Molecular Simulation

    Jorge, M. & Campbell, C.

    1/10/1431/03/18

    Project: Research - Studentship

    Research Output

    Understanding gas adsorption selectivity in IRMOF‐8 using molecular simulation

    Pillai, R. S., Pinto, M. L., Pires, J., Jorge, M. & Gomes, J. R. B., 14 Jan 2015, In : ACS Applied Materials and Interfaces. 7, 1, p. 624-637 15 p.

    Research output: Contribution to journalArticle

    Open Access
    File
  • 35 Citations (Scopus)
    327 Downloads (Pure)

    Computational approaches to study adsorption in MOFs with unsaturated metal sites

    Fischer, M., Gomes, J. R. B. & Jorge, M., 2014, In : Molecular Simulation. 40, 7-9, p. 537-556 20 p.

    Research output: Contribution to journalArticle

    Open Access
    File
  • 46 Citations (Scopus)
    1157 Downloads (Pure)

    Thesis

    A modelling study in harnessing metal-organic frameworks for challenging gas separations

    Author: Campbell, C., 8 May 2018

    Supervisor: Jorge, M. (Supervisor) & Fletcher, A. (Supervisor)

    Student thesis: Doctoral Thesis

    Computational modelling and design of bioinspired silica materials

    Author: Centi, A., 7 May 2017

    Supervisor: Jorge, M. (Supervisor) & Sefcik, J. (Supervisor)

    Student thesis: Doctoral Thesis

    Prizes

    FEUP Scientific incentive prize

    Miguel Jorge (Recipient), 2012

    Prize: Prize (including medals and awards)

  • FEUP Scientific incentive prize

    Miguel Jorge (Recipient), 2011

    Prize: Prize (including medals and awards)

  • Activities

    Molecular Simulation (Journal)

    Miguel Jorge (Editorial board member)
    2015 → …

    Activity: Publication peer-review and editorial work typesEditorial board member