Projects per year
Personal profile
Personal Statement
Miguel Jorge was born in Ovar, Portugal. In 1998 he completed his Degree in Chemical Engineering at the University of Porto, followed by a PhD in Chemical Engineering at the University of Edinburgh in 2003. He has since held full time researcher positions at the University of Massachusetts (USA) and at the University of Porto (Faculty of Sciences and Faculty of Engineering). He joined Strathclyde in 2013, and is a Senior Lecturer in Chemical and Process Engineering since December 2020.
Miguel’s research applies molecular modelling techniques, such as Monte Carlo and Molecular Dynamics, to understand systems that are important in chemical engineering applications, with the long-term goal of turning molecular simulation into a widely used industrial tool. His research spans areas as diverse as adsorption, material synthesis and characterisation, thermodynamics and phase equilibrium, physics of interfaces and nanotechnology. He has published over 80 articles in international scientific journals and delivered over 30 invited seminars and conference presentations. Miguel is currently the Regional Editor for Europe of Molecular Simulation. He is also strongly interested in research policy, having been a founding member and former President of the Portuguese National Association of Science and Technology Researchers (ANICT), as well as Director of the International Consortium of Research Staff Associations (ICoRSA), and a Science Policy advisor for the European Commission.
Research Interests
Understanding phenomena at the molecular level is progressively gaining importance in Chemical Engineering, not only at the fundamental level, but also in the context of property predictions and material/process design. Our research group applies molecular modelling techniques, such as Monte Carlo and Molecular Dynamics, to understand systems that are important in chemical engineering applications, with the long-term goal of turning molecular simulation into a widely used industrial tool.
Specific topics under study include:
i) computational design of new nanoporous materials for adsorptive separations, using a multiscale approach from the quantum to the mesoscale level, and based on detailed knowledge of the relationships between synthesis conditions, material properties and performance;
ii) developing new models for adsorption in nanoporous materials, including crystalline materials (e.g., zeolites), amorphous materials (e.g., activated carbons) and hybrid organic-inorganic materials (e.g., metal-organic frameworks or mesoporous organosilicas);
iii) understanding how molecules self-assemble in solution to yield supra-molecular aggregates like micelles and liquid crystals;
iv) gaining an in-depth understanding of interfaces between two fluids (gas-liquid or liquid-liquid), with particular application to ionic liquids;
v) developing new methods and molecular models for calculating the solubility of complex molecules, including pharmaceuticals and pollutants.
Accepting PhD Student Applications in the following topics:
- Computational design of bio-inspired silica materials for carbon capture
- Predicting drug solubility in different solvents using molecular simulation and machine learning
- Adsorption of water-containing mixtures in Metal-Organic Framework materials
Teaching Interests
I currently teach the following courses in the Chemical Engineering BEng/MEng:
- Thermodynamics (second year)
- Molecular Simulation in Chemical Engineering (fifth year)
- Chemical Engineering Design (fourth year)
- Chemical Engineering Project (fifth year)
I have received the following awards for my teaching activities:
- Shortlisted for Best Teacher in Faculty – Engineering, Strathclyde Teaching Excellence Awards, 2019.
- Winner of Best Teacher in Faculty – Engineering, Strathclyde Teaching Excellence Awards, 2015.
- Nominated for Teaching Excellence Award at the University of Strathclyde (“Most Enthusiastic” and “Most Supportive” categories), 2014.
- Nominated for Teaching Excellence Award at the University of Strathclyde (“Most Enthusiastic” and “Most Supportive” categories), 2013.
Industrial Relevance
Molecular simulation methods are playing an increasing role in industrial applications, partly due to massive advances in computer power, but also to methodological developments. Molecular simulation methods are now becoming competitive with more traditional macroscopic approaches (e.g., equations of state or quantitative structure-property relationships) in prediction of fluid properties. My research aims to increase the suitability of molecular simulation as a tool with industrial relevance, particularly in the areas of solubility prediction, adsorption prediction, design of new solvents, and design of new porous materials.
Expertise & Capabilities
- Molecular Simulation
- Thermodynamics
- Statistical Mechanics
- Interfacial processes
- Adsorption
- Porous Materials
- Computational Modelling
Expertise related to UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):
Education/Academic qualification
Doctor of Philosophy, Molecular Simulation of the Adsorption of Water/Organic Mixtures on Activated Carbon, University of Edinburgh
Award Date: 1 Jan 2003
Master of Engineering, Universidade do Porto
Award Date: 1 Jan 1998
Fingerprint
- 1 Similar Profiles
Collaborations and top research areas from the last five years
-
Computational modelling and design of nanoporous silica materials
Jorge, M. (Principal Investigator), Centi, A. (Researcher) & Ferreiro-Rangel, C. A. (Researcher)
EPSRC (Engineering and Physical Sciences Research Council)
12/03/14 → 11/09/15
Project: Research
-
Screening Metal-Organic Frameworks for Natural Gas Upgrading Using Molecular Simulation
Jorge, M. (Principal Investigator) & Campbell, C. (Researcher)
1/10/14 → 31/03/18
Project: Research - Studentship
-
Understanding gas adsorption selectivity in IRMOF‐8 using molecular simulation
Pillai, R. S., Pinto, M. L., Pires, J., Jorge, M. & Gomes, J. R. B., 14 Jan 2015, In: ACS Applied Materials and Interfaces. 7, 1, p. 624-637 15 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile72 Citations (Scopus)482 Downloads (Pure) -
Computational approaches to study adsorption in MOFs with unsaturated metal sites
Fischer, M., Gomes, J. R. B. & Jorge, M., 2014, In: Molecular Simulation. 40, 7-9, p. 537-556 20 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile75 Citations (Scopus)2072 Downloads (Pure)
Datasets
-
Data for "The Dipole Moment of Alcohols in the Liquid Phase and in Solution"
Jorge, M. (Creator) & Barrera, M. C. (Contributor), University of Strathclyde, 3 Feb 2022
DOI: 10.15129/23867c83-ad24-48a9-aa83-4803ee126e7b, http://www.gromacs.org
Dataset
-
Data for: "A Polarization-Consistent Model for Alcohols to Predict Solvation Free Energies"
Jorge, M. (Owner) & Barrera, M. C. (Creator), University of Strathclyde, 11 Feb 2020
DOI: 10.15129/81a27bde-cf07-4946-9ab6-911138e83e04, http://www.gromacs.org
Dataset
Prizes
-
Best Teacher in Faculty (Engineering)
Jorge, M. (Recipient), 2015
Prize: Prize (including medals and awards)
-
FEUP Scientific incentive prize
Jorge, M. (Recipient), 2011
Prize: Prize (including medals and awards)
Activities
-
Molecular Simulation (Journal)
Jorge, M. (Editorial board member)
2015 → …Activity: Publication peer-review and editorial work types › Editorial board member
-
European/Japanese Molecular Liquids Group Annual Meeting
Jorge, M. (Keynote/plenary speaker)
Sept 2012Activity: Participating in or organising an event types › Key-note speaker and plenary lectures at conferences