Personal profile

Personal Statement

I joined the University in 2010, and I am currently a Reader in the Department of Chemical and Process Engineering.  I received a BSE in Chemical Engineering from Arizona State University (ASU), graduating summa cum laude in 1988.  During that time, I received several awards, including the American Institute of Chemical Engineers' (AIChE) Annual Chapter Award for Scholastic Achievement (1987), the American Institute of Chemists' Student Research and Recognition Foundation Student Award Certificate (1988), and the ASU College of Engineering and Applied Sciences Distinguished Senior Award for the Chemical, Bio, and Materials Engineering Department (1988).  In 1994, I gained a PhD from MIT in the Department of Chemical Engineering, holding a National Science Foundation (NSF) fellowship.

In 1995, I was awarded a two year research fellowship from the Miller Institute for Basic Research in Science at the University of California at Berkeley, working closely with Prof. J. M. Prausnitz in the department of Chemical Engineering.  In 1998, I won a US National Research Council (a branch of the National Academy of Sciences and the National Academy of Engineering) postdoctoral fellowship to continue research at the National Institute of Standards and Technology (NIST) in Boulder, CO.

Before arriving at the University of Strathclyde, I worked as a Lecturer and a Senior Lecturer in the School of Chemical Engineering and Analytical Science at the University of Manchester (previously UMIST) for 10 years.

Research Interests

My research group uses statistical mechanics to understand and predict how the overall properties of a system, such as its dynamics or structure, are determined by the interactions between its constituent components. These systems can range from normal fluids composed of simple molecules to complex structured fluids, such as found in biological systems or many consumer and personal care products, where the constituent molecules can assemble to form intricate structures which can again organize to form larger structures. I am also interested how collisions between granules in a powder affects its overall structure and flow, such as in avalanches or pattern formation in sand dunes, and how bubble stability and interactions lead to the properties of foams. Currently, the interests of the group are focused on the role of electrostatics and its coupling to dispersion forces on the interactions and dynamics of colloidal particles (e.g., proteins, polyelectrolytes, micellar aggregates, etc.). A better understanding of the link between microscopic characteristics and macroscopic properties should allow the rational design of new materials and better prediction and control of the behavior of processes.

I use a combination of theory and computer simulation techniques to tackle these problems. The theoretical approaches range from integral equation and density functional theories, field theoretic methods, to classical solution thermodynamics and transport modeling. The simulation methods include non-equilibrium molecular dynamics and advanced Monte Carlo methods, as well as continuum modeling through finite difference and finite element methods.

Expertise & Capabilities

My main areas of research are modelling solution thermodynamics (e.g., developing mathematical descriptions phase behaviour), transport phenomena (e.g., heat and mass transfer calculations), and statistical mechanics (relating the bulk behaviour of a system to the structure and interactions of its constituent molecules).  The range of projects that I have been involved with are quite broad, ranging from the fluid mechanics of vented runaway reactors (supported by the European Commission, contract no. C1RD-CT-2001-00499), and thermodynamic modelling of produced-water/crude-oil mixtures (supported by Shell and STATOIL), to developing and studying surfactant specific electrodes (EPSRC, GR/R41965/01) and modelling the fundamental behaviour of polyelectrolyte fluids and the influence of membranes on protein stability (BBSRC, GR/B17005).

Currently I am leading a KTP project with Pentagon Chemicals Ltd on developing a new process for the production of an intermediate feedstock chemical.  This encompasses the full spectrum of process development from laboratory work characterising catalyst performance to designing for production on an industrial scale.

Teaching Interests

I have taught a broad range of modules across the Chemical Engineering curriculum, both at the undergraduate and postgraduate levels.  My main teaching duties have been focused on the "core" of Chemical Engineering: transport phenomena, chemical and process thermodynamics, and design.

Currently taught modules:

  • CP213 Applied Mathematics and Problem Solving
  • CP407 Chemical Engineering Design
  • CP535/970 Molecular and Interface Science
  • CP540 Project Planning, Management, and Methods
  • 18530 Chemical Engineering Project

Previously taught modules

  • Ethics and Sustainability
  • Nanotechnology
  • Problem Solving
  • Fluid Flow and Heat Transfer
  • Chemical Engineering Practice 1
  • Programming and Optimisation
  • Chemical Thermodynamics
  • Momentum, Heat, and Mass Transfer
  • Modelling and Simulation

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy
  • SDG 9 - Industry, Innovation, and Infrastructure

Education/Academic qualification

Doctor of Philosophy, Integral equation theory of complex fluids, Massachusetts Institute of Technology

Award Date: 1 Jan 1994

Bachelor of Science in Engineering, Arizona State University

Award Date: 1 Jan 1988

Fingerprint

Dive into the research topics where Leo Lue is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 9 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or